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ABSTRACT

STOCHASTIC APPROXIMATION WITH CORRELATED DATA

New almost sure convergence results for a special forts of the

multidimensional Robbins—Monro stochastic approximation procedure are

developed. The special form treated is motivated by a consideration of

several algorithms that have been proposed for discrete time adaptive

signal processing applications. Most of these algorithms can also be

viewed as stochastic gradient—following algorithms.

Essentially, previous convergence results contain a common

“conditional expectation condition” which is extremely difficult (if

not impossible) to satisfy when the “training data” is a correlated

sequence. In contrast, the new convergence results developed in the

present work are easily applied to cases where the “training data” is

heavily correlated. In fact, the new convergence results are appli-

cable when certain moments exist and certain “decay rates” on two auto—

covariance functions can be established. For example, when the data

sequence Is normal and (I) M—dependent, (ii) autoregressive moving

average (ARMA) , or (III) can be viewed as samples of a bandlimited con-

tinuous time process, the new convergence results can be applied to

establish the almost sure convergence of each algorithm treated.

Several special forms of data correlation matrices that are shown

to arise in discrete time signal processing are examined. New corn—

putationally efficient procedures are developed for both the inversion

of a matrix having one of the treated special forms and for the solution

of a corresponding set of simultaneous linear equations. The special

forms treated are termed Toeplitz and block Toeplitz matrices.
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ADDENDUM

Since the completion of this report, the author has become aware of the

excellent paper by H. Akaike, entitled “Block Toeplitz Matrix Inversion”

(SLAM J. Appi- Math., Vol. 24, March 1973, pp. 234—241). Most of the

results treating block Toeplitz matrices which are developed in Chapter

V of the present work have been developed by Akatke. In case the block

Toeplitz matrix involved is both sysisetric and persymisetric, a case which

arises , for exauple, when each block of a syimiietric block Toeplitz matrix

is a Toeplitz matrix, then the results of the present work provide a ~~re

efficient solution than the results of Akaike.
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I. INTRODUCTION

Although stochastic signal processing can be viewed as a branch of

time series analysis, the desire to implement simple sequential real—

time signal processing structures motivates one to approach signal

processing problems in a decidedly different manner than one would

approach related time series problems.
’
~rhis work is devoted to a unified

analytical treatment of algorithms that have been proposed for discrete

time adaptive signal processing. These algorithms are treated within

the framework of the multidimensional Robbins—Monro stochastic approxi—

‘nation procedure. The special form of the Robbins—Monro procedure which

is treated herein and the convergence results obtained are of interest

in their own right, having applications outside the realm of adaptive

signal processing.

A. Motivation: Adaptive Signal Processing

In many signal processing applications, the ultimate goal is to

• provide an “optimal” estimate of some signal process which is itubedded

in an additive noise process. The physical implementation of the

“optimal” estimator (or filter structure) requires that certain parame-

ters of the signal and noise processes be known. The filter structure

is usually constrained to be a causal, linear structure and the opti—

mality criterion is often minimum mean square error (MMSE) . For this

case, the optimal filter is well—known to be the Wiener filter or the

Kalman filter. These filters can be implemented provided that the

required parameters are known . For discrete time signal processing

with uncorrelated signal and noise processes , the required parameters

are those which completely specify the signal and the noise autocorrela- •

• tion sequences. The required parameter set stay or stay not be finite.

1~ 
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In case the required parameters are unknown, identification

technique. (see e.g., (1J,[2j) can be used, at least in some cases, to

estimate the desired parameters. The estimated parameters can then be

used to Implenent the required filter. Due to inherent uncertainties

in the estimated parameters , the performance of the resulting filter

can differ dramatically from the performance of the desired optimal

filter. A closely related approach is to constrain the filter to have

a certain fixed suboptimal structure and to estimate the corresponding

family of parameters required to implement the simpler structure.

An interesting concept that has evolved from the latter approach

is the concept of an “adaptive filter.” The term “adaptive filter”

is used taroughout this work to denote a filter which designs itself,

either from the raw input data, or from some training data. Many of the

algorithms used for adaptive signal processing are stochastic versions

of gradient—following procedures. Significant early contributions to

adaptive signal processing were made by Widrow and Hoff [3], and by

Sakrlson [41 . A more complete treatment of the relevant literature is

given in Chapter II.

Primary considerations in the application of adaptive signal

processing techniques are the convergence properties of the algorithms

used. Most of the algorithms which have been proposed for use in

adaptive signal processing applications are slight modifications of

multidimensional versions of either the Robbins—Monro stochastic

approximation procedure (51 or the Kiefer—Wolfowitz stochastic approxi—

‘nation procedure [6). Unfortunately, many proposed uses for adaptive

signal processing involve processes for which available convergence

results are inapplicable.
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B. Purpose

The purpose of the present work is to (i) establish a unified

framework suitable for the analytical treatment of algorithms which have

been proposed for adaptive signal processing applications, (ii) investi-

gate the probabilistic convergence properties of algorithms which fall

within this framework, and (iii) examine the detailed structure of

several special form, of data correlation matrices that arise in

discrete time signal processing applications .

C. Contents and Organization

In Chapter II , several representative systems that have been

proposed for adaptive signal processing are reviewed , including systems

used for adaptive channel equalization and adaptive array processing.

Most of the algorithms that are treated in Chapter II are shown to fall

into a specialized form of the multidimensional Robbins—Monro stochastic

[ approx imation procedur~ .

Existing convergence results for the Robbina—Monro procedure are

examined in detail in Chapter III. The need for additional analytical

work to establish meaningful probabilistic convergence for the algo—

rithas treated in Chapter II is established . .

In Chapter IV , new convergence results are developed, providing

an almost sure (a...) convergence proof for a certain family of algo—

ritinus under conditions which are easily verified . For example , in the

normal case, when the input signal and noise processes are M—dependent ,

or stable autoregressive moving average (ARMA ) processes , or can be

viewed as samples of bandlimited continuous time processes , the new

convergence results establish the almost sure convergence of each

member of the family of algorithms treated .
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In Chapter V , several specia l forms of data correlation matrices

that are shown to arise in d iscrete time signal processing are examined.

New coinputationally efficient procedures are developed for both the

inversion of a matrix having one of the treated special forms and for

the solution of a corresponding set of simultaneous linear equations.

The special forms treated are termed Toeplitz and block Toeplit z

matrices. The new procedures represent an efficient method for design—

lug the desired suboptimal MMSE filter in case the required correlation

sequence values are known a prio2’i .

A summary of new results and suggestions for future work is

presented in Chapter VI.

• _ _  _ _  

_ _ _ _ _ _ _ _ _ _
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IT. SYSTEMS PROPOSED FOR ADAPTIVE SIGNAL PROCESSING

In this chapter, several systems which have been proposed for

adaptive signal processing applications are reviewed. In Section Il—A

the channel equalization problem is treated ; Section lI—B is devoted

to a treatment of the adaptive array problem. The main point to be

developed in this chapter is that many algorithms proposed for adaptive

signal processing fall into the realm of “stochastic gradient—following

algorithms” and, as such, the convergence properties of these algo-

rithms may be treated in a somewhat unified manner. The literature

reviewed here is representative of the most significant contributions

in recent years on the topic of “adaptive signal processing.”

A. Systems Proposed for Adaptive Channel Equalization

In this section, several systems which have been proposed for

adaptive channel equalization are reviewed. The motivating problem, to

which these systems are applicable, is the automatic equalization of

voice—grad e telephone channels to reduce intersyntbol interference, thus

enabling a much higher data rate for digital signal transmission. Such

channels usually are characterized as having a moderately high signal—

to—noise ratio.

It is assumed throughout this section that for the equivalent

baseband system at time t kT, k = 0,1,2,..., a real—valued random

variable is transmitted into a linear time—invariant channel having

unit pulse response {h k )
~~ _,,,. The output of the channel is corrupted

by add itive noise, 
~ K ’ and fed to the input of an adaptive equalizer.

The input to the adaptive equalizer, Xk, is thus given by

Xk 
— ~ aih.x_& + n

k 
. (2.1)

5 

. . , .. . • 
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The sequence {ak } is the information—bearing sequence which is to be

estimated by the output of the adaptive equalizer. For digital data

transmission, a.K is chosen from a set of M discrete amplitudes via

some probabilistic rule. It is assumed throughout that {a k} and

are uncorrelated , i.e., that E{aknL ) E{ak }E{nL ) for all integer k,L,

and that E{%} — 0, where E{} denotes statistical expectation.

A commonly used equalizer structure is a transversal filter having

p adjustable weights. Defining IJ and X.K by

— (w1,w~ w ) ,

(2.2)
— ~~~~~~~~~ ..~ Xk_p+l )

where ‘ denoteS matrix transpose, the output of the transversal equaliz-

er can be written as

— w ’x.~ . (2.3)

Suppose that it is desired to choose W so that is a “best esti—

mate” of ak_a for all k — a,a+l,..., and for some fixed integer a.

There have been a number of “criteria of goodness” proposed for charac-

terizing the “best estimate.” Def ining

ç — (hk, hk l ~. Phk_p+l)

(2.4)
= 

k~
nk_l~

. .

the output of the t ransversal equalizer , 
~k ’ can be expressed as

W’H (a~ + (W ’ H ) ~~ ~ a
~
W’H.K L

) + W ’Nk . (2.5)



_ _ _  ~~~~• •  • -•-- ——---
~~~~~~ 

—----
~~~
--- ----

~~
-- 

~~~~~~~~~~~ - -
~~~~~~~~

•-

7

From (2.5), it can be readily seen that the distortion due to

intersymbol interference at time t — kT is given by

— (W ’M )~~ ~ 
a~

WtH~~~ . (2.6)

t~k—a

One easily obtained bound for is given by

I l k 1 < B max Ia~I ~~~~~~~~~~~~~ 
. (2.7)

It is noted that for channels having severe intersymbol interference,

B may be infinite; however, in case B is infinite the channel has the

interpretation of an unstable linear system in the bounded output for

all bounded input sense. Lucky 1 7 ]  has considered automatic equaliza-

tion from the point of view of minimizing B with respect to W subject

to the constraint that W’H = 1. The constraint that W ’H = 1 is
a a

convenient for digital detection in that the decision regions (or

slicing levels) can remain fixed under this constraint. The procedure

proposed by Lucky [ 7] makes use of a sequence of isolated unit training

pulses. Define D by

D = 
~ 

IW ’H l  — 
~ 

W ’H sgn(W’H~)~ (2.8)

m#tz m#c&

where sgn (y) = 1 if y > 0 and sgn(y) — —l if y < 0. Noting that

(formally)

— 
~~

hm_l+l sgn(W’H~) , (2.9)
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and assuming that h.K ~ 
C6k o~ 

where is the Kronecker delta,

c sgn(W’H
1 i~ 

, (2.10)
i

for all I — l,2,...,p and I a + 1. Furthermore, from (2.1) it

follows that for a~ — 6L (,~ 
X
k 

— h
k 
+ ~~~~ C6k 0  + hence, from

(2.3), 
~~~ 

W’H
k
. Consequently, Lucky considers incrementing the weight

vector, W , by the following scheme: after each test pulse has arrived

increment w
1 by —u sgn 

~i l  
for I # a + 1, and increment Wcz+l 

by

—~.i sgn (y —l). The constant ii > 0 is termed the step size. For chan-

nels capable of suppo~rting binary transmission without equalization,

Lucky shows that IW’R 1_1 1 is asymptotically bounded by 2p for all

i = l,2,...,p,i # a + 1, assuming an infinite signal—to—noise ratio.

Similarly, he shows that IW’H — ii is asymptotically bounded by 2p. In

[81, Lucky extends the results of (71 to obtain a decision—directed

adaptive equalizer which does not require a sequence of isolated train-

ing pulses and can “track” slow time variations in the channel charac—

teristics. Lucky also investigates what has since been called the

“probability of a runaway” for his system. The equalizers introduced by

Lucky have also been called “zero forcing equalizers” in that they tend

to force p — 1 zeros in the overall unit pulse response W’LK
.

Gersho [ 9] has considered a scheme somewhat similar in nature to

that of Lucky [ 7]. He considers minimizing the deterministic ~2 norm

of the error sequence. The error sequence is the difference between the

deterministic part of the equalizer output and the desired output,

assuming that a sequence of known isolated training pulses is being

sent. Suppose for the moment that n.
K 

in (2.1) is identically zero.

Then with given by (2.3) and dk the desired equalizer output,

L ~~~~~~~~~~~~~~~ — - .~~~~— — ——- _~~~~~~~~ ~~~~ -~~~~~— ~~~~~~~—~-- — ~
-

~~
---

~~ ~~~~~~~~
-

~~~~
-
~~~

- 
~~~~~~~
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Gersho (9 ~ considers choosing W to minimize

— }(y ~ — dt ) 2 
. (2.11)

Motivated by (2.11), Gersho considers minimizing

— 
~~ 

(y~ — 
~~~~ , (2.12)

teJk

- • 

where it is not assumed that 0, and is an index set def ined by

— {t + k~, £ + k~+l,...,Z0 + k~ + ,c} . (2.13)

Gersho assumes tha t x~ and di are virtually zero for all ~ / ~k
for an isolated unit pulse sent at t kF , and that ~ > K . The

gradient of with respect to W — Wk 
can be expressed as

vW~ I — 2F
k
W — 2P , (2.14)

k w1w k k

where
• Fk 

— 
~ 

X~x~ , (2.15)

and
= ~ d1X1 . (2.16)

The resulting algorithm for “training” the weight vector., W, is given by

W~~1 
W~ — u (FkWk — 1’k~ 

(2.17)

where W0 is arbitrary and u > 0. It is worth noting that for

R — E{F
k

), P — E{P
k
}, w = IC’P is the weight vector that minimizes

where 
~k 

is given by (2.12). Gersho [9 1 shows that for a

suitably small p > 0, E{ (W
k 

— R
~~
P)’(Wk 

— i~
1P)) can be asymptotically

bounded by some c(p), where c(p) -~~ 0 as u 4 0. Furthermore, he

— •1 •
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points out that for increasingly large signal—to—noise ratios,

R 1P + A 1P, where A is given by

A — 
~~ 

E{X
t

}E(X
~
) . (2.18)

tcJ
k

The weight vector W — A~~P characterizes the equalizer structure

which will minimize the noise—free criterion of (2.11) . Geraho also

discusses techniques for choosing p to maximize the convergence rate.

Niessen and Willim h o ] consider the minimization of

= E{[y~ 
— aki } (2.19)

with respect to W, assuming that (ak
} and {n.K ) are jointly wide—

sense stationary and that E(a
k
n
~
}0  for all k # L. With 7k given

by (2.3), the gradient of ~ with respect to W is

— 2 k W  — 2P , (2.20)

where R~~ 
— E{Xkc} and P — E{a

k
X.K
}. Equations (2.19) and (2.20)

suggest the algorithm

— Wk P(R
XX
Wk 

— P) . (2.21)

Unfortunately, since R,~ and P are assumed to be unknown, (2.21) is

inapplicable . Consequently , Niessen and Willim consider approximating

R,~ by ~~~~ and P by Y~XkI where y{ is a quantized version of

7k The quantization of 7k is performed according to the a pi’iori

known possible discrete levels of (a.K}. Substituting these approxlma—

tions into (2.21), the following algorithm results:

Wk+1 — Wk ~uXk(yk — 
i{) . (2.22)

This algorithm represents what is co.nonly referred to as a



-~ -r
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“decision—directed equalizer ” in that decisions which are made about

ak~~ 
(i.e. y~) are used in the algorithm to train the weight vector.

Clearly , in order for the algorithm given by (2.22) to “converge,”

y~ must initially be a very reliable estimate of a
k

. The conver-

gence analysis performed by Niessen and Willim [101 is essentially

deterministic and assumes y~ — ak_a .

In order for the strategy represented by (2.22) to be useful for

moderately low signal—to—noise ratios (viz., less than 30 dB), a con-

straint such as used by Lucky [ 7 ] ,  i.e., W’H
a 

— 1, seems to be essential.

It is noted that the technique of Niessen and Willim does not inherently

require an initial “setup period” with known isolated training pulses,

and it can be capable of “tracking” slowly time—varying channels.

George at al. [11] consider a decision feedback strategy somewhat similar

to that of Niessen and Willim [10), using an adaptive transversal filter

following the quantizer. The output of this second transversal filter

is fed back into the input of the quantizer. Monsen [12] presents a

performance comparison of decision feedback and linear equalizers.

Schonfeld and Schwartz [13] consider the following algorithm

which is quite similar to (2.17) :

— W~ — a
k

(F
k
W
k ~

‘
k~ 

(2.23)

where and 
~k are given by (2.15) and (2.16), respectively. With

R — E{Fk
} and P — E{P

k
}, Schonfeld and Schwartz [13) choose

— 2[(A
~ 
+ X

~
) (A — A t) cos (~2k~~~~~15]~~ (2.24)

for k — O,1 ...,N—l , where all of the eigenvalues of R are assumed

to be contained in the interval [A~,X] . In [131, they show that this

choice of is optimal in the minimax sense for minimizing

______

L - ~~~~~~~~

._ 
- 

-
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— R
~~

PJ’ E(W
N 

— R 1P). In f14J , Schonfeld and Schwnrtz extend the

above philosophy to obtain a second—order algorithm :

Wk+l — W
k 

- ak(Pk
W
k 

- + Bk(W
k 

- Wk..l) , (2.25)

where — 0 and {a
j
) and (B~

} are chosen to minimize

E{W
k 

— R 1P}’E{Wk 
- I(’PJ in the minimax sense for all k. Both of

these algorithms ((2.24) and (2.25)) force E{W
k
) to converge more

rapidly than e.g., (2.17). Consequently, these algorithms seem to be

useful when equalizing high signal—to—noise ratio channels in a training

mode by sending a sequence of isolated known pulses.

Kosovych and Pickholtz [15] consider a successive overrelaxation

technique f or training the weight vector of a transversal equalizer

during a training period using isolated pulses for the minimization of

the mean—squared error E {E k }P 
~k 

given by (2.12). With Fk 
and

given by (2.15) and (2.16), respectively, the overrelaxation algorithm

considered by Kosovych and Pickholtz is given by

— W
k 

— w(Dk 
- wEk)

~~ (FkWk - “ky , (2.26)

where w > 0 is a “relaxation factor ,” D
k 

and E
k 

are, respectively ,

diagonal and strictly lower triangular matrices , such that

— — Ek 
— E~. Here E~ is strictly upper triangular, leaving D

k

to be composed of the diagonal elements of Fk . Denoting the ij th 
:

element of a matrix A by (A)
1~~~ 

(2.26) can be written as

- (W
k)il 

- w(F
k
)
~~~{~~~

(F
k
)
lJ

(Wk+l)~~1

+ ~~
(Fk)j j (Wk)

j l  
- (Pk)~~l} 

. (2.27)

-~~~~~~~ - -~~~~— ~~~~~~~~~~~~~ -~~~~“--——~~~~~~~ -~~ ~~~~~~~~~~~~~ --~~~~-~~—~~~~~~ ~~~~~~~~~~~~~~~~~~~
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Note that (2.27) does not require any matrix inversions. Kosovych and

Pickholtz (15) discuss methods f or choosing w and compare conver-

gence rates of (2.26), (2.17), and (2.25) via computer simulations. They

also obtain a bound on the asymptotic mean square error in W
kP assuming

that Fk, F~ and 
~k ’ P~ are independent for all k ~ 9..

Recalling that from (2.3) it is desired to train the weight

vector, V,. of a transversal equalizer to “optimize” the approximation

a~~~, it is noted that most of the systems discussed so far have

assumed that p = 2N + 1 and a — N. Qureshi [16] presents an adaptive

technique for choosing a and training V simultaneously. Kobayashi

[17] presents a more general technique using maximum likelihood estima—

tion and the Robbins—Monro stochastic approximation procedure to

estimate (a
n

), sample timing, and carrier phase. Walzman and Schwartz

[l8J , 119] present a discrete frequency domain approach to the adaptive

transversal equalizer problem. Benedetto and Biglieri [20] discuss a

Kalman filter theory approach to the reduction of intersymbol

interference.

Finally, the importance of the Viterbi algorithm to sequence

estimation for data transmitted over dispersive channels should be

noted. Porney [21] introduces a receiver structure consisting of a

whieened matched filter, a symbol—rate sampler, and the Viterbi algorithm.

10 121) it ii shown that this structure is a maximum—likelihood

estimator of the entire transmitted sequence. Qureshi and Newball 1221

and t4a~ee and Proakis (231 discuss adaptive structures which make use of

the Viterbi algorithm. Both of these schemes ([22] and (23]) include

an adaptive transversal filter having a weight vector , W , which is

trained by a stochastic gradient—following algorithm.

- ~~~~~~~
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B. Systems Proposed for Adaptive Array Processing

In this section, several systems which have been proposed for

adaptive array processing are reviewed . Data from an array of sensors

(e.g., hydrophones, seismometers, or antennas) can be “optimally”

processed to reject certain directional components of the observed field

and provide an estimate of some desired signal component ( e.g., [24)—

(30]). Adaptive array processing is used to compensate for varying

degrees of a priori statistical ignorance in such problems.

Consider an array of L sensors, each sensor followed by a tapped

delay line having H equally spaced taps. Denote the delay between

adjacent taps on each delay line by D, and denote by x9.(t) the output

at time t of the sensor, 9. — 1,2,...,L. Define the ML x 1

matrix X(t) by

X’(t) — (x1(t),x2(t),...,x.~~
(t)) , (2.28)

where X9.+(m l)L(t) — x9.(t 
— (m—l)D) for all 9. — l,2 ,...,L and for

all m — l,2,...M. Define the ML x 1 matrix W (the so called array

weight vector) by

— (wl,w2,...,WML) . (2.29)

The output of the array is given by

y(t) — W’X(t) . (2.30)

It is assumed that X(t) can be expressed as

X(t) — S(t) + N(t) , (2.31)

where S(t) is a vector of signal components and N(t) is a vector of

noise and/or interf.r nce components. For the purposes of this section,

the goal of th. array processor design is to choose the weight vector, W,

1• 
-- 

.
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so that y(t) will have certain desired properties. For example, W

might be chosen so that y(t) is a minimum mean—square error (P ISE)

estimate of some desired signal component, d(t).

Shor [31] considers a simple stochastic gradient—following

technique to maximize an estimate of the output signal—to—noise ratio

for a narrowband array processor. The technique given in [31] is

presented here for the more general array structure defined in the

preceding paragraph. Define

= W ’X(t), n
~~~

(t) — W ’N(t) ,

kT 
2

= f I s (t)dt (2.32)
(k—l)T out

and 1 kT
— i~ 

I “~ ~
(t)dt , (2.33)

- (k—l)T U

for k — 1,2 In order to maximize 
~k’~~ ’ Shor considers the

algorithm

— W
k 

+ A ( s
k

/nT~){_~~ (k’l)T 
S(t) s

~~~
(t)dt

— 

I
~k
T 

(k-~~)T 
N( t) n

out(t)dt} , (2 34)

for k — 1,2,..., where A > 0. Shor advises using a “strong” target

signal with characteristics similar to the desired signa l so that , when

the target signal is present, S(t) X(t), and when the target signal is

absent. N( t)~~ X(t). Using a “strong” target signal during alternate

T—second intervals, and using an approximate version of (2.34), one

might hope that on the average, Wk will tend to increase for

_ _ _ _ _ _ _ _ _ _ _ _  __________ ~~- - - -- 
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increasing k. Shor also considers an algorithm similar to (2.34) with

the fac tor removed , and presents some computer simulation

results.

Lacoss [32] considers a simplified array processor for which H — 1,

i.e., the array output is simply a weighted sum of the data at the

output of the sensors. Lacoss assumes that x9.(t) — s(t) + n9.(t) for

L — l,2,...,L; i.e., the signal component at the output of each sensor

is identical. Defining R — E{N(t)N’(t)}, Lacoss considers the mini-

mization of W’R V subject to the constraint that W’l — 1, where
flu L

is the L x 1 matrix — (l,1,...,l) ’. This criterion has been termed

“minimum variance distortionless look” because the output for such a

processor, y(t), is given by

y(t) — 8(t) + W’N(t) , (2.35)

and the variance of W’N(t) is minimized. By using a projected

gradient technique, Lacoss shows that the algorithm

— W
k 

— 

~~~ 
— 4~ 

1
L1L)RnnWk (2.36)

for k — 0,1,2,..., converges to the desired optimal weight vector, W*,

provided that W ,lL — 1 and 
~ ~k 

= ~~~. An important property of the
k

above algorithm is obtained by noting that

— E{X(t)X’(t)} = E(s2(t)}l
tlL 

+ R , (2.37)

so that

(I — 

~~ 
lt~~

)R
~~ 

— (I — 

~ 
lLl~

)R n 
(2.38)

where it has been assumed that E{s(t)n9.(t)} — 0 for all £ — l,2,...,L.
The importance of (2.38) is that R may be replaced by 

~~ 
in

_ _ _ _  ~~~~~
_ . . 

~ - 

I__ .~ ~~~~~~~~
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• (2. 36) without affecting the convergence properties . Consequently, when

Rna and/or ~~~ are unknown, one may consider algorithms of the form

W~~1 
- W

k 
- Uk~~ 

- 

t 1L~1? 
LK
W
k , (2.39)

where R,,~ is an unbiased estimate of R~~, e.g.,

— X(kT)X’(kT) . (2.40)

With — X’ (kT)W~, one might consider the algorithm

W~~l Wk - ~k~
1 - 

~~ 
ltlL)x(kr)yk . (2.41)

Note that and X(kT ) are directly available from the processor , so

that no “target signal” is required . One problem which arises in the

implementation of algorithms such as (2.41) is that roundoff and quanti—

zation errors can accumulate, enabling Wk to wander from the constraint

plane.

• Frost [331 considers a more general constraint problem than Lacoss,

with an added feature that deviations from the constraint plane are

corrected for. Frost considers the minimization of W’R
XX
W subject to

the constraints that -

L

~ ~~~~~~~~~~~~ — B , (2.42)
i—i

for all m — l,2,...,H. Frost assumes, as does Lacoss [32],  that

x9.(t) — 8 ( t)  + n9.(t) for all £ — 1,2,. ..,L, so that the constraints

given by (2.42) imply a constraint oui the frequency response of the

array to any signal component arriving f rom the same direction as s(t) .

In obvious notation , the constraints given by (2.42) may be expressed

as C’W — g, where g’ — (g
1
,g
2
,...,g.

11
). A projected gradient algorithm, 

—--- - - —  -r

- -- - - —-—-.—-—-——~~---—-----~—‘ —.—-— .-—- .-—-—- -—--— — —~~~ — - • ~~~—---- -. -~~- -- — — -  
~
-
~

——---- —-- -~~
--
~:.~~~~ ~~~~~~~~~~~~~~~
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ana logou, to (2.36) , for the problem at hand Is given by

Wk+l — W
k 

— uk
(I — C(C ’C )

~~C ’)R Wk , (2.43) 
. 

-

for k — 0,1,2 ,. . . ,  with C ’W0 — g. Frost (331 adds the term

OC ’C)~~ (g — C’ Wk) to the right hand side of (2.43) to correct for

deviations of Wk f rom the constraint plane . Frost proposes the

following algorithm for the adaptation of V for unknown Rxx:

— W~ — 
~(I — C(C ’C)~~C’)X(kT)y ~ + C(C’C)~~ (g — C ’W k), (2. 44)

where — W~X(kT) .

Winkler and Schwartz [34] propose a stochastic projected gradient

algorithm for finding the constrained optimum point for a concave or

convex objective function subject to nonlinear constraints . In [35]

Winkler and Schwartz consider a similar problem by making use of penalty

function techniques. Kobayashi 1361 discusses the method of steepest

descent and the method of conjugate gradients with projection for the

iterative design of an array processor. Such techniques can be quite

useful for the off—line processing of array data. It is noted that the

adaptive technique proposed by Frost (viz. (2.44)) can be deduced from

the steepest descent procedure given by Kobayashi [36] in much the same

way that (2.44) can be deduced from (2.43).

Widrow at al. [37] consider minimizing E{(d(kT) — y(kT))2 } with

respect to W, where d(kT) is some desired array output. In terms of

obvious notation, define

F (W) 
~~ 

E{ (d
k 

— 

~~~~ 
— 

2 
— 2P’ W + W’R W , (2.45)

where ~
2 

— E{d~}, P — E{d
k
X.
~
}, and R~~ — E{X

kX~
). Noting that the

——4
— ——--.——- .---. - ~~ -- -----— ~~-- - - - --- --- - — V.-.--- - — ~~~~~~~~~
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gradient of C(W) with respect to V is given by 2R
XX

W — 2P, a

reasonable algorithm for minimizing F~(W) is

— W
k 

— 3& (Rxxwk — P) . (2.46)

Widrow at al. (371 consider the following stochastic version of (2.46)

for use when R and P are unknown:

Wk+l 
— W

k 
— u

~~
(Yk 

— d
k
) . (2.47)

Noting that dk is the only quantity in (2.47) which is not directly

available (indeed, it is dk which one wishes to estimate), Widrow at al.

propose the use of a “pilot signal” having statistical properties similar

to dk. Suppose g(t) is the output of a pilot—signal generator, that

g(t) and d(t) have similar statistical properties, and that

d(t) — s1(t 
— 81) — s2(t 

— 82
) ... = 5L(t 

— 0L~ 
Define

• X~(t) (g (t+8
1
) , g(t+82),..., g(t+BL),

g(t+81—D), g(t+82—D),..., g(t+aL
_D),

— (M—l)D), g(t+82 
— (M—l)D),...,

g(t + — (M — l)D)). (2.48)

The two—mode adaptation procedure proposed in (37 1 involves using (2.47)

with dk 0 alternately with — X
1(kT) and dk = g(kT). The one—

mode adaptation procedure proposed in (37 ] makes use of the following

algorithm:

— Wk 
— 1i (Xk + X1(kT) ) (y~ — g(kT)) , (2.49)

where y~ — W
1~

(X~ + X1(kT)) .

Griffiths (38] proposed an algorithm which does not require a pilot

signal. Assume that E{d(t)n9.(r)} 0 for all real t,r and for all

hiii.~iiii~ r -- - ~ ‘— —-V..-- -~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~ ‘ - -‘ ‘~~~~~‘~~~ -- .—-—-• ,-. ‘~~~‘ ‘ “~~~~~~~~~~
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9. — 1,2 ,...,L. Then P — E{d
kX.K
) E{d~(S~ + Nk)) — E{d

k
S
k
}, so that P

is appropriately called a signal correlation vector, which is independent

of the noise statistics. Considering that if enough statistics are

known to be able to generate an appropriate pilot signal g(t), P is

probably also known, one is led to consider the following algorithm

proposed by Griffiths [38]:

- V 

Wk+l = W
k

_ u(Xk
y
k
_ P). (2.50)

Tack [39] has proposed an algorithm that is intimately related to

(2.50). Suppose the weight vector is to be trained so that 
~k 

is an

MMSE estimate of the additive (nonpropagating) sensor noise n1(kT).

If (n
1

(kT) } is an uncorrelated or “white” sequence with E{n~ (kT) )

and n1(kT) is uncorrelated with all other signal and noise components,

then the algorithm given by (2.50) with P’ = 0
2(1,0,0,... ,O) is

appropriate. The resulting array has been termed a spatial innovations

processor since the “goal” of making 
~k 

a white sequence implies that

a cancellation of all of the spatially correlated signal and noise fields

is being attempted . Tack [39] has shown that the resulting weight

vector can be a very good indicator of the “bearings” of all the propa-

gating components of the signal and noise fields.

While the previously discussed array processors are inherently

time—domain approaches, the next system to be discussed lends an inter—

pretation of processing in “frequency—wavenumber space.” The following

discussion is based on the presentation of Scharf and Farden [40]. In

[40] the treatment was limited to a linear (in—line) array of equally

spaced sensors. The discussion here applies to more general array

geometries.

• - - V-_ _ _ _

__________________________________ ~~~~~~~~~~~~~~~~~~~~~~~ 
V . -
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Let ~q (t ,x ,y , z ) be a real—valued homogeneous random field for

q — l,2,...-,Q. Let t denote time and (x,y, z) denote spatial coordi-

nates in some suitable cartesian coordinate system. Furthermore, assume

that the ~~~( . , . , . , . )  are zero mean and uncorrelated , i.e., that

Eft (ti,Xi,Y l,Zi)E
~~
(t2,X2~Y2~Z2

)} = 0 for all t1, t2,x1,x2,y1,y2,z1,z2
and for all n in. Let = (x9.,y9.,z9.), 9. 

— l,2,....,L, denote the

spatial coordinates of the sensors. Let V

x9.
(t) = ~ (t,p9.) + n9(t) , (2.51)

q,,]~~

for £ = 1,2,.. .,L, where the n9.(t) are real—valued zero mean wide

sense stationary stochastic processes and E{n9.(t)nK
(r )}  0 f or all

real t,i and for all l<k,9.<L such that k ~ 9... Suppose that each

of the 
~q 

corresponds to a propagating plane wave. Then there exists

a set of constants (8~~q
: l<9.’L, l<q~Q} such that ç(t,p9.)

— 
~q
(t_8

t q ~ Pi
)• Consequently, (2.51) can be rewritten as

x9,(t) = 
~q
(t_8

t,q~ Pi
) + n

9.
(t) (2.52)

q 1

for 9. = 1,2,. ..,L. The constants {B~~~
} are clearly functions of the

array geometry, propagation velocities, and the “directions of propaga-

tion.” The relationships of the constants {8
9.q

} to the concept of

wavenumber 8hould be clear. Define

M-l mn
z9.

(f ,kT) ~ x9.
((k—l + ~ )T)e i2hhi , (2.53)

m 0

for n — 0,l,2 , .. . ,M—1 , k —  1,2 , ..., where f — nIT, i.e., z9.(.,.)

is the discrete Fourier transform (DFT) of x9.(.). Defining

i e •

-a -~~-~-- ~~~~~~~
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M-l ma
v19. (f ,kT) ~ n9. ( (k— l + ~)T)e~~2”T , (2.54)

m—0

from (2.52) z9. (f~~kT) can be expressed as

z9.
(f~~kT) — 

H~l ? ~q
((k_l + ~~) T — 89. q~P1

)e i H + ~9.
(f ,kT).

m—O q l
(2.55)

For T “large enough ,” E{z 9. (f ,kT)z
9. 

(f ,kT)) 0 for all n
1 ~1 ~l 2 “2

and for all l<L
1
,t
2
<L, so that for any criterion of optimality

involving only second order statistics, one can process the data inde—

pendently for each f , n = 0,1,.. .,M—l. The — is used to denote complex

conjugate. Furthermore, for large T,

z9.(f~~kT) 
M~l 

~ ~q
((k_l + ~)T,p1)e~~

2
~~~n

8L,q +

m 0  q—l

+ ~9.
(f
5,

kT) . (2.56)

Defining
M-l V

Yq
(f~~kT) — ~ ~q

((k~•••l + ~ )T ,p1
)e i2W M , (2.57)

m 0

one easily obtains that

—.j2irf 8
z9.

(f ,kT) ~ ~ y ( f ,kT)e n t ,q 
+ ~9.( f , kT) . (2.58)

q 1

Def ine

Z
k
’(f

n
) (z

1
(f~ ,kT), ... z~(f ,kT)) , (2.59)

— (~1
(f~,1T), ... , n

~
(f,,,kT)) ~ (2.60)

and 

~q
’
~~n~ 

— (
n l ,q ~

2’
~ n

82,q ~
12
~~n

8L,q) . (2.61)
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Then

Zk
(fn) 

~ q—l 
y (f~~kT)D

q
(f~ ) + N

k
(f

fl
) . (2.62)

Suppose that a linear MMSE estimate of y1
(fn~

kT) of the form

~1
(f ,kT) — W’Zk

(f) is desired. It is easily shown that the desired

weight vector ,W*, is given by

w*(f~) R~~(f )P1(f) , (2.63)

where R~
( f )  = E {Z

k
(f )Z k ’ ( f ) } , P1( f )  = E {y

l
(f ,kT)Z

k
(f )) —

and a~ (f~) = E{lYq
(f
~~
kT)I

2} for q 1,2 , . ..,Q.  It

is of interest to note that R(f ) can be expressed as

R
~
(f
~
) — a~(f~)I + 

q~1 
~~~~~~~~~~~~~~~ (2.64)

where a~(f) E{I~ 9.(f ,kT)I2). The Sherman—Morrison matrix inversion

lenuna (41] can be applied Q times to (2.64) to show that W*(f~)

can be expressed in the form

w*(f ~) = 

q~l 
Yq~q~~~

) (2.65)

where the Yq 
are complicated functions of a~ (f ) , o2(f ), and all

pairs of inner products D’(f )D~(f) [40]. Consequently, ~1(f~,kT)

can be expressed as

~1(f ,kT) — 

q 1  ~~~~~~~~~~~~ 
- (2.66)

The operation D
~
(f

fl
)Zk(ffl) has the interpretation 

of being the output of

a discrete frequency domain conventional beamforiner steered to provide

a distortionless look at

_________ -V 
V.~~~ 

_ V

— —~~~~—~~~ V.
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Suppose for the moment tha t the Dq (f ~ ) are known . Defining

D ’ — 

~~l~~n~’ 
D
2

(f ) , D~ (f ,,)) (2.61)

and r ’ — (‘r1~Y2~
...

~ YQ
) , (2.68)

(2.66) can be rewritten as

~1
(f ,kT) — r’ Dzk , (2.69)

where the notational dependence of D ,~ , and Zk on f has been

dropped. The operation DZk can be interpreted as a spatial DFT, as

discussed in [40]. One may now pose the MMSE problem as follows: f ind

F such that

e(r) E{ Ir ’Dz k — Y1
(f
~~kT)I

2} (2.70)

is minimized. Invoking the orthogonal projection theorem, r* is seen

to be the solution to ‘

— nP
1 

— 0 - (2.71)

A steepest descent solution is readily found as [40]

Fk+l — rk 
— 

~k
D(RzD F

k 
— P1) - (2.72)

A stochastic version of (2.72) that can be implemented when is

unknown is

rk+l — rk 
— 1Jk~~

Z
k7k 

— P1) , (2.73)

where — Z
~
D’F

k
. In case the Dq are unknown, one may implement

several strategies, as mentioned in [401.

- ~~~. 
V V-V 

V V 

~~~~~~~~ 
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C. Critique

In this section , it is shown tha t most of the algorithms discussed

in Sections tI—A and Il—B can be written in the form

= W~ + 
~
1
k

(P
k 

— FkWk) , (2.74)

where W
k 

is a real p x 1 matrix, 
~~k~k—l 

is a sequence of positive

constants, 
~k 

is a real p x 1 random matrix, and F
k 

is a p x p real

symmetric random matrix. Detailed convergence results for algorithms

that may be cast into the form of (2.74) are presented in Chapters III

and IV. It is also shown in Chapter III that (2.74) is a special

case of the multidimensional Robbins—Monro stochastic approximation

procedure. The purpose here is to show that the algorithm given by

(2.74) is sufficiently general to ensure the wide applicability of the

convergence results presented in Chapters III and IV.

It is convenient to start by considering a rather general MMSE

filtering problem, and establishing a hierarchy of adaptive algorithms

for varying degrees of a priorn statistical ignorance [42]. Let

{S
k

} and (N
k
} be jointly wide—sense stationary R~—va1ued (R~ is used

to denote p—dimensional Euclidean space) random processes. Define

V X.K — Sk + Nk, and assume that E{N
k

} — 0 and E(S
k
N
~
) 0 for all

k,t. Suppose that it is desired to estimate some real—valued linear

function of Sk, say 8
k’ 

by a linear tIMSE estimate of the form

— W’X
~K~ 

Def ine

E (w) — E{ (s
k 

— 

~
‘k~~

1 — E(s~) 
— 2w’P + w’ R w  , (2.75)

where P — E{s
k
X.
~
} — E{s

kSk}, and R — E{X.Kc}. It is assumed that

R is positive definite.xx

V _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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A recursive method for computing the w — w
0 RX~ 

P that minimizes

F (w) is the gradient descent algorithm:

— V
k 

— I
~k
(1
~xx~

7
k 

— P) , (2.76)

where Uk > 0. This algorithm provides an alternative to computing

w — RX~ 
P. The steepest descent algorithm is easily obtained from

(2.76) by choosing to minimize C(w~~1). The steepest descent

algorithm is given by (2.76) with (43 1

(R w — P)’(R w — P)xxk x x k
Uk (R w — P)’R (R w — ~) 

- (2.77)
xXk xx xxk

Note that by letting — ~‘, Fk — and Uk as in (2.77), (2.74)

becomes the steepest descent algorithm. In order to make use of

gradient descent algorithms such as (2.76), Rxx and P must be known

a priori. Efficient techniques f or solving R
~~
w — P for w — w

0 
are

treated in Chapter V for several special forms of Rxx •

In case the “pilot vector,” P, is known a priori but Rxx is

unknown, one may consider stochastic versions of (2.76) such as

— W
k 

— Uk~~k
XkWk 

— P) . (2.78)

Note that with appropriate interpretations of Uk) Xk~ 
and P, (2.78)

is the algorithm (2.50) proposed by Griffiths [381, and that with

— L~X1~, ~k — P, (2.74) becomes (2.78). Furthermore,

Fk 
— I x9.x~ (2.79)

&—k—M+l

and 
~k 

— P in (2.74) is also a reasonable a1goritI~ to consider in

this case.

t
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Now, consider the case for which neither nor P is known

a priori . For this case , one may consider algorithms of the form

~~~~ - Wk 
- Uk

(XIK
X
I
’
~
W
k 

- 5kXk) . (2.80) V

With suitable interpretations of Uk~ 
X
k~ 

5
k’ 

(2.80) is the algorithm

(2.47) proposed by Widrow et al. (37), or algorithm (2.22) proposed by

Niessen and Willim [101 . With F
k 

and given by (2.15) and (2.16),

respectively , (2.74) becomes the algorithm (2.17) proposed by Gersho [9),

or algorithm (2.23) proposed by Schonfeld and Schwartz [131.

Other algorithms, although not fitting into the MMSE philosophy or

directly into the stochastic gradient following philosophy, can, in

some cases, be cast into the form of (2.74). With F
k 

= — 

L 
1
L
1
L~~k’

where E{R..K
} — and 

~k 
= o. (2.74) becomes the algorithm (2.39)

proposed by Lacoss [32]. With F
k 

= (D
k 

— wE
k
)’F

~
, t’

k 
= (D

k 
—

and 
~k 

= w, (2.74) becomes the algorithm (2.26) considered by Kosovych

and Pickholtz [151. With

Fk = X.kX. — C(C’CY’C ’(X.KX~ 
+ I) , (2.81)

and 
~k 

— C(C ’C) 1g, (2.74) becomes the algorithm (2.44) proposed by

Frost [33]. The algorithms proposed by Lucky [7] and Shor [31) do not

fit the class of algorithms given by (2.74).

A simple trick can be used to put complex—valued algorithms such as

(2.73) into the form of (2.74). Consider 
V

= r
k 

— Uk
(R
k
T
k 

- P) , (2.82)

where is Herinitian non—negative definite. Using the superscripts

r and i to denote real and imaginary parts, respectively, it is

easily shown that

V -—  .~~~VV ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -V.--. - •~~V V~~V —— - --- — _ 
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R~ —R~ F~ P~
— — - (2.83)

R~ r~

Consequently, with some obvious definitions, (2.82) (and hence (2.73))

can be put into the form of (2.74), with Wk 
real, real and symmetric ,

and 
~k real. Furthermore , it is easily shown that the resulting real

symmetric Fk is positive definite if and only if the Rerinitian

is positive definite.

- ~~~~~TV V~~• V•V.~V_ - V
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III. EXISTING CONVERGENCE RESULTS

Most of the adaptive signal processing algorithms discussed in

Chapter 2 are sequential algorithms which can be written in the form

— W + Ii~ (P~ 
- F~W~)~ (3.1)

where E{Fn} — Rxx and E(P~} — P. This algorithm can be viewed as

a stochastic gradient—following algorithm or as a stochastic approxi-

mation to the solution, w — w0, of the equation

R w — P. (3.2)

This chapter is devoted to a review of existing results on the conver-

gence properties of algorithms similar to (3.1).

A. Strong Convergence Results for Stochastic Approximation

In 1951, Robbins and Monro [5] presented a sequential technique

for estimating the solution, 0, of the equation

M(x) cs,

where 14(x) is a monotone real valued function defined for all real x

and (3.3) is assumed to have the unique solution x — 0. In the Robbins—

Monro procedure it is assumed that the nature of 14(x) is unknown, and

that corresponding to each real x is a random variable Y(x) with

distribution function Pr [Y (x) < y ]  = H (y ~x) such that

M(x) — f y  d H (y j x )  . (3.4) 
I -

The procedure star ts with X1 — x1 an arbitrary real number and pro-

ceeds via the recursion

V - 
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(3.5)

where is a random variable having the conditional distribution

~~~~ ~~ YI’~ — x ]  — H(ylx ), and (a~} (n > 1) is a sequence of

positive constants such that

a — , ~ a~ < . (3.6)
n 1  ‘~ n—l

It should be obvious that (3.1) is a multidimensional version of (3.5).

Under the additional conditions that M(x) is nondecreasing,

~~~ I X—O 
> 0 , and Y(x) is bounded with probability one for all

real x, Robbins and Monro [5] proved that u r n  E((X _0)2) = 0.n

Since the pioneering work of Robbins and Monro , a great deal of

work has been done on establishing conditions for which schemes similar

to (3.5) converge. Kiefer and Wolfowitz [6] considered the problem

of estimating the value of x = 0 such that 14(x) is a maximum.

Blum [44] proved almost sure (a.s.) convergence (i.e., Pr[lim x “0] — 1)
n

f or both the Robbins—Monro and the Kiefer—Wolfowitz procedures under less

restrictive conditions than those in [ s ]  and [6]. In 1954, Blum [451

presented multidimensional versions of both the Robbins—Monro and the

Kiefer—Wolfowitz procedures, and proved a.s. convergence for each.

Dvoretzky [461 presented a general stochastic approximation procedure

which contains the Robbins—Monro and the Kiefer—Wolfowitz procedures as

special cases. Dvoretzky proved both mean—square (m.s.) and a.s. con-

vergence for his procedure. Wolfowitz [47] presented a vastly simpli-

fied proof of Dvoretzky’s Theorem. In 1959, Derman and Sacks [48] gave

a simple proof for the a.s. convergence of the multidimensional version

L 
—
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of Dvoretzky’s procedure. The interested reader is referred to the

excellent review papers by Schastterer [49,50] and Sakrison (51] for

a more complete account of the developments in stochastic approximation.

Essentially, all of the above mentioned works contain a common

assumption which, for our application to multidimensional adaptive signal

processing, severely limits the effectiveness of the results. The assump-

tion under scrutiny is the following: in (3.5) it i’s assumed that the

conditional distribution of T given X —x coincides with the din—n n n
tribution of Y(x~ ) for all real fixed parameter values x .  In par-

ticular, this assumption implies that E{Y~JX~’. x~} — E{Y(x )) (—14(x )).

In terms of the algorithm (3.1), this would require that E{FnW;PnIWn
IWJ

— E(F w - P), for all fixed (parameter) w in p—dimensional Euclidean

space , ~~ That this is an unreasonable condition can be seen by noting

that is a rather complicated function of W1, W2, ..., W~~1 as

well as P1, P2, ..., ~~~~ and F1, F2, ... , F~_ 1; and that, in general,

is a correlated sequence. Loosely speaking, given the value

that the random vector Wn takes on, one is also given some “information”

about what values the random matrix F
n 

is allowed (and possibly also

Pn)• 
It is noted that several papers state an alternate assumption

which is similar to that above: the conditional distribution of Y~

given 
~~~~~~~~~~~~~~ 

coincides with the distribution of Y(x~) for

all rca]. fixed parameter values x1~
. It is also noted that several

stoci ~tic approximation convergence theorems require a 
weaker condi-

tion with the work “distribution” above replaced by “expectation .” In

practice, such conditions essentially require that either {Y~) is an

independent sequence for the distribuiton condition or an uncorrelated

_,~~~~~~~~~~~_
_ V V V .~~~~~~~~~~~~ V
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sequence for the expectation condition. Clearly, such conditions severely

Limit the applicability of the results. Surprisingly, very little has

been done to alleviate the restriction due to this assumption. The

results of Derman and Sacks (48] will now be discussed to suggest a

possible approach for obtaining a more applicable result , as well as

to show how the algorithm (3.1) is related to the general stochastic 
V

approximation procedure of Dvoretzky.

Derman and Sacks (48] have provided a simple proof to the

following multidimensional version of a theorem originally stated by

Dvoretzky [461. The absolute value signs are to be interpreted as the

p—dimensional Euclidean length.

TBE0R~ 1. Let {X~} .~ {T~(X1~...,X)}3 and {Y~(X 1~.. .~X~)}(n>1) be

p-d imensional random vectors with X~ arbitrary and

+ Yn(X i~~~~Vi Xn) .

Assume that

E{r~Ix1~. . .,X~} 
a~a.0 , (3.8)

~ E { I Y ,~V}  < (3.9)

IT~I < max(cz~~ (1#6~)IX~I — i~
) , (3.10)

where {a~}~ (8~}, and {i~} are sequences of positive nwflber8 such

that

~ +o _, ~ ~ 
y~~= . (3.11)

n~1 n—i

a~a. ~

~~~ 
1

~V V~~~ ~~~ ~, V 
-V
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Making use of a technique suggested by Dvoretzky (46], algorithm

(3.1) can be written so that the above theorem can be applied. Defining

V - W - w
0 , (3.12)

(3.1) can be written as

~~~ — (I — 

~n
F
n
)%Y
n + , (3.13)

where

C — P  — F  ~ . (3.14)n n n o

Now, defining

— ~~((R — F~ )V + C )  (3.15)

and V V

T (V ) — V — ~ R V , (3.16)n n n n xx n

(3.13) becomes

V +1 - T(V ) + Y(V ) - (3.17)

Define the matrix norm of a pxp matrix A by 
V

HA I l — sup ~Aq~ , (3.18) V

which for A real and symmetric yields

h A i l  - max lA ~ (A)I , (3.19)
I

where (A~(A)J~~,1 are the p eigenvalues of A and q is a p—element

colwnn vector. V

— —~~~~~~~~~~~~ —V_ rn— ~~~~— —
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Let 
~~n~~”l 

and 
~~n~n”'l 

be nonincreasing sequences of positive

numbers such that + 0, 
~n 

+ 0, ~ p — ~~~, and ~ 
—

n’l n l

Since R is assumed to be positive definite, there exists an n

such that for all n > n , p < , where — mm A
i
(R ).

For all n > n , and for all u C R1’, I T~ (u) I — lu - p~ R U I  < ui .

I hr — p R I  I ~~. h u h  (1 — I’ A
i )~ 

For all l u l  ~ n~ , l u l  (l—u~ x i )

~~. l u l  — p A 1 i ;  whereas, for ui < 
~~ I uI (l—i-1 Amm ) <i i .

~n
Amin~ 

It follows that for all n > n ,

IT (u)l < max (n (l— ~~ Amjn)~ 
u i  — p~ A

1 n )  , (3.20)

so that, with X — ~~ a~ flnU 
— 

~‘n A
min) ~n = 0 , and y =

~
‘n 

A
min flrj~ 

(3~ 7)~ (3.10), and (3.11) are satisfied. The following

corollary has thus been established .

COROLLARY. Let VnJ ~~ 7 , T be p-dimensiona l random vectors given

by (3. 12) to (3.17). Let be a nonincreaeing sequence of po si- - 

V

tive nwnbers with p~ - -  C and ~ p = 
~~. Assume that (3. 8) and (3.9)

a s  n=1
are satisfied . Then l V~h ~ b.

The difficulty with the above corollary is, of course, the establishment

of (3.8) and (3.9). Condition (3.9) can be deleted by requiring that

E{lp ’Y (u)h2) be uniformly bounded for all n > 1 and for all u c R~,

and that ~ 
p < 

~ . This uniformly bounded condition will be dis-
n—i n

cussed in more detail later. Condition (3.8) has the same limitation

mentioned previously. Dvoretzky [46] shows that (3.8) may be replaced by

_ _ _ _  - V .  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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sup 1E{Y 1x 1,.. .,x }I ~ , (3.21)
n’l 

n

V 

or by the condition that each element of

~ E(Y~ fX 1,.. .,x } (3.22)
n 1

be uniformly bounded and convergent for all sequences x1,x2,...,x 

Unfortunately, conditions such as (3.21) or (3.22) are extremely dif-

ficult to verify in practice.

The method of proof of Derman and Sacks [481 can be modified to

obtain yet another alternative to (3.8). Let P = P ben n ,x
1
,X

2
, . .

random orthogonal tra’isformatione such that P~T~ - (IT $- , 0,...,O)’ and

def ine Z = P T , where Z’ (Z ,Z ,. - - ,Z ). If
n n n  n ni n2 up

m Z (1+~ )
2

ç nl n
~ 2~ + Bn’l n n

and 2 4m Z (l+e )nl n
n”i (2a +8 )

2
n zi

converge a.s. to random variables as m -‘ , then condition (3.8) of the 
V

theorem can be deleted and the theorem remains true. Although this may

suggest a reasonable approach, the establishment of these conditons

appears difficult, even for the special case considered in the corollary.

V Also, condition (3.9) or its (stronger) alternative of uniform bounded—

ness of E{Ip~~Y(u)I
2) is somewhat restrictive. In any case, this

approach will not be pursued here.

Sakrison [52] presents a continuous Kiefer—Wolfowitz procedure 
V

V and proves mean—square convergence f or an a.s. bounded process and a

~ 

- V -V 
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requirement on the rate at which the minimum mean—square prediction

V 

error approaches its asymptotic value. Sakrison [511 suggests that this

condition is applicable to the Robbins—Monro procedure. More recently,

some convergence results for algorithms of the form of (3.1) with

= constant have appeared .

B. Weaker Convergence Results for Stochastic Approximation

Daniel]. [53] investigates a kind of mean—square convergence for

algorithms similar to (3.1) with p = p = constant. In fact, letting

be a sequence of p—dimensional random vectors, p = p, and 
V

F — X X ’ , (3.1) is precisely the algorithm considered by Daniell.

Rewriting (3.1) in the form of (3.13), with C given by (3.14),

Daniell [531 proves the following theorem. The trace of a matrix A is 
V

denoted by tr{A}.

THEOREM. Define A .  = XJ~ - R~ ,. Suppose that (i) there existe a

sequence of positive numbers {r
~k

} converging to zero such that for

every pair of positive integers ‘k and 1

l+k
~ c4

2} < (3.23)
a

and l+k
~ A - I l

2) 
~~ 

(3.24)
j =i+i a

(ii) there exists a constant a0 > C such that if for all integer

i > 1 , then

E {IX~ I
4 x1,c1,. - .,x~~1,c~~1) < (3.25)

V 

. 
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~ f~. f~ ~x ,c1,. . - ,x. 1, c . 1 (3. 26)

(iii) there exists a sequence of positive real constants (a
k
i

converging to zero such that i f  f o r  all integer i ~ I and for all

integer k, L, H satisfy ing i < i+k < M < L,

tr {F1 {AL AM I x 1,c1,..., x~,c~) - — E{AL AM
}) < a~ ; (3 .27)

and (iv) there exists a posi tive constant B such that

E {I C ~h 2 ) < B
2 (3. 28)

and E{iI~l
4 

Ic~ j
2 

< B
2 

- (3. 29)

Then for all S > 0 there exists a p-~ > C such that for  all

0 < p < p* there exists a positive integer k~(’S) such that for all

k > k (6 )  
V

p

- (3.30)

The kind of convergence obtained by Daniell is clearly weaker than V

mean—square convergence; however, by replacing p wIth a nonincreasing

sequence of positive constants (
~~~~~~)~~~~~~

1 
converging to zero, it seems

reasonable to conclude that the proof could be modified to obtain mean—

square convergence. For applications which require the algorithm to

track slowly time varying parameters, a fixed step size seems to be a

reasonable as well as a widely used technique.

Setuie [54) performed a simulation study of an algorithm similar to

that treated by Daniell, and noted that when the process (X.K} is

correlated, a bias is introduced which increases with step size, p. An

analytical justification for this can be obtained by taking the

• 

I 
_ _  _ _  
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expectation of both sides of (3.1) to obtain

E {W~~1) = E{W } + u~ (P_E{F~W~)) . (3.31) 
V

Suppose that E{W } — v and that p — p . If (F
n} is a correlated

sequence, then Fn and W are also correlated so that E{FW) ~‘ I’

and hence E {W~~1} ,~ w .  From this simple argument, it should be

concluded that in order to have any hope for the algorithm to even be

asymptotically unbiased , the condition that p ÷ 0 is essential. It

is interesting to note that if is a sequence of positive constants

converging to zero and the variance of each element in the correction V

vector u~ (P~_F~W )  is decreasing with increasing n so that the vari-

ance of each element of W will also be decreasing, F and W willn n n

“decorrelate.”

The main issue here is to determine the limitations of the

assumptions made in Daniell’s theorem, i.e., to determine the types of

correlated processes (xl for which the theorem is applicable. Daniell

[55] provides several examples of processes which satisfy the conditions

of the above theorem; however, for the “correlated cases ’ considered , it V

is assumed that the process (X.K} is bounded . Conditions (3.25) and

(3.26) indicate that this bounded assumption is essential for the

application of the above theorem.

lUm and Davisson [56] treat another algorithm which fits into the

framework of (3.1). Let {s} and (xl be jointly stationary

N—dependent scalar stochastic processes. A sequence of random variables

is said to be M—dependent if for all index sets tn’ ‘sin’ with

mm I n—m i > M , the two sets of random variables {y :ncI I and
nd ,mcJ n n

n m
are statistically iitdependent. Define
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(n+i)K— 1
X’ — (x ,x ,.. • ,x ), let P — -- a X ,

~V - n n n-i n—p-i ~ K m r ~ 
m m V

~ 
(n+l~K—1

F — — 
~ X X ’ , and p — p — constant. Substituting into (3.1)

~ K m—nK m n
V 

yields

V (n+l~K—l 
•

W~~1 — W + (p /K) 
~ 

Xm(Sm
_X
~
W
n) - (3.32)

m-nK

Kim and Davisson [56 ] show, under the above assumptions, that

E{IW — w 1 2} can be made arbitrar ily small for n large enough by

choosing p small enough and K large enough. Although not explicitly 
V

stated by Kim and Davisson [56], their analysis also requires the exis—

tence of all fourth—o:der moments for both (a } and {x I. Then n
results of Kim and Davisson given above can likely be modified by re-

placing p with a nonincreasing sequence (p1 of positive constants

converging to zero to obtain mean—square convergence.

Schmetterer [50) presents the following theorem, a result which is 
V

quite similar in nature to the results discussed above of Daniell, and

Kim and Davisson.

TH!OREM. Let a be a sequence of positive real nwnbere, satisfying

a. = ~~. Let x1~ and y~ be p-dimensional random vectors such tha t
ian ~

x =x - au (3.33)
n-El n irn

for every n > 1. Furthermore, for every n > 1, let M~( )  be a

Borel measurable mapping from ? to ?. Assume that

E {l Yn - M ( x f l2} exists for every n > 1, and tha t there exists a real

C > 0  such tha t

I -

LV~V
_ _________- ~~

- ~~~~~~~
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/~1 I y — M f~r~ l’ } < , n 1 . (3. ‘~~~‘

Furthermore, suppose that there exists a K > 0 which satisfies
V 

—1a~ 
< K , (3.35)

such that for every n > 1 and xc.R1’, the inequality

fx — a,~M,.~
(x) I (1 - K a )  IxI (3.36)

holds. If E{1x11
2} exists, then E( lx~ l

2} exists for every n > 2.

Furthermore ,

(E{lx ~I
2})1”2 ~~C

1”2X~ ÷ ( (E {1x 1 1
2 } ) 1”2 

— Cl~’2i( l ) f l  (l_ Ka~) 
- (3.3?)

It follows that a

1Th (E {I x  ~2}) h/2 < c~
’2f 1 

. (3.38)

Although condition (3.34) of the above theorem severely limits its
V 

applicability, some comments on the above theorem are in order. First

of all, note that no conditional expectation or conditional distribution

restriction is made. Secondly, (3.37) gives a bound on the mean norm—

squared error for all n > 1. Hence, if the above theorem could be

applied in a practical situation, it would be quite useful. Noting that
V 

(3.13) can be written as

V = V — p (F V —C ) , (3.39)n+l n n n n  n

with C = P — F w , and substituting x — V , a — p , y — F V — C

(3.33) results. Letting M (v) = R~~v f:r all vcR~, (3.34) requires

that there exist a C > 0 such that

• ~~~~~~~~~~~~~ -• V V - - - V — - — - 
V V - 

V-V
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E (IF
0
V
~ 

— C - R V ~~
2
1 < C , n > 1 - (3.40)

Since R is assumed to be positive definite with minimum eigenvaluexx
A m m ’  K — Amin and (3.35) establish (3.36). Apparently, (3.40) is

difficult to establish unless Vn is uniformly bounded (in n) with

probability one, thus suggesting a possible application to truncated

algorithms. That is, suppose w0 is known a priori to lie within

souse closed convex parameter space I’, and consider the following V

truncated version of (3.1)

— EW~ + Pn(~n
_F
n~

tm
nflp (3.41)

where (xJ~ — x if xcP , and [xJ~ is the boundary point of p closest

to x if x/P. Defining 
~w0 

— (x:x+w cP}, and with V — W —

(3.41) becomes

• V — [V — p (F V + F w — P 
V

n+l n n n n  n o  n P
~ 

. (3.42)
0

Clearly , this algorithm is a.s. uniformly bounded , and can be shown to

satisfy (3.40). Unfortunately, certain analytic difficulties arise when

attempting to establish (3.36) for this algorithm. A result similar to

the above theorem of Scbmetterer for algorithms such as (3.42) would be

highly desirable.

C. Critique

In this chapter , several of the existing convergence results

applicable to algorithms having the form of (3.1) have been reviewed in

detail. Several suggestions have been made as to how existing results

might be modified to obtain reasonable conditions for which W + w in
n o

1 -  

_ _  _ _
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some meaningful  probabilistic sense when the sequence 
~~n

1 (and

possibly also (P 1) is correlated.

In summarizing the state of existing stochastic approximation

results, it can be said that the conditions imposed by Robbina and I4onro,

Dvoretzky, and Derman and Sacks, for example, employ ingenious mathesa—

tical constructs to permit general applicability of stochastic approxi-

mation results. From a practical point of view, however, it cannot be

emphasized too strongly that their conditions are easily established for

(3.1) only when (P — Fy I
1 

is an independent sequence of

valued random variables,vhere w is a fixed parameter. Consequently

the existing results are not well—suited to the analysis of structures

that must be adapted in correlated environments. As repeatedly ment ioned

previously, the restrictive assumptions are the “conditional distribution,”

or the “conditional expectation” assumptions. The only results (known

to the author) not making these restrictions are those of Daniell, Kim

and Davisson, and Schmetterer, mentioned in Section lIt—B . tn the next

chapter, easily verified conditions will be established for which

as given by (3.1) will converge a.s. to w0. These conditions will

permit us to relax the “conditional expectation” or “conditional distri—

bution” assumptions of existing theorems and prove convergence in cor—

related environments of practical interest.

— 4— V



IV. NEW CONVERGENCE RESULTS

In this chapter, new,sa.ily verified conditions are established

V which ensure the a.s. convergence of W to w0 as given by (3.1).

Section tV—A contains the main results of this dissertation. The proof

of the theorem relies heavily on the techniques presented by Albert and

Gardner [57). The proof of the practically useful result, Corollary 2,
V 

makes strong use of the results of Serf ling ([58) and [59)). In Section

tV—B the results of Section IV—A are applied to the specific algorithms

treated in Chapter II, providing analytical Justification for existing

and proposed applications of these algorithms. In Section IV—C, a

highly specialized form of (3.1) is treated which seemingly suggests a

“maximum convergence rate” for certain algorithms. Open issues
-
- V
. 

regarding the convergence properties of algorithms fitting the framework

of (3.1) are discussed in Section IV—D.

A. Almost Sure Convergence Results

As shown in Chapter III, the algorithm

~~~~ — V + p (P — P W )  , (4.1)

V can be written in the form 
V

(I - PnFn)V
n 
+ Pn

C
n 

(4.2)

where V — W — w0 , (4.3)

w
0
_ R ;~~P , (4.4)

C — P  — F w  , (4.5)
n n n o

E {F ) R , (4.6)
V - n xx

43
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and E(P } — 
~ (4.7)

It is assumed that is a real symmetric positive definite p x p

matrix, W and P are elements of R1’, (u~} is a nonincreasing

sequence of positive constants, and that 
~~k

1k—1 is a random sequence

of real symmetric non—negative definite p x p matrices. Defining

for {A
~
} a sequence of p x p matrices

k 
~~~~~ 

...A&+ A V
, jf k > L , V

h A  — (  —l 1 £ (4.8)
(i, if k< ~~;

and iterating (4.2), one obtains

V~~1 
— TI (I — p

kFk~~
n
l + ~ ( IT (I - p F )) PkCk . (4.9)

k—i k— i J—k+l

Defining

in
Q~ 

— II (I — p4F4) , (4.10)
in

— 

~ ~k+l,n 
PkCk (4.11)

k—i

(4.9) becomes

~~ 
V1 + A , (4.12)

Recall that the matrix norm for a p x p matrix A is defined by 
V

h A lt — sup lAx i , x cR~ , (4.13)
Ix il l V

which, for A real and symmetric coincides with

- - 
V

—- - -  -



flA il • max (lA~ (A)l) (4.14)
i t(1,2,...,p}

where {A
1
(A)}~~1 are the p eigenvalues of A. Denote the minimum

and maximum eigenvalues of A by X
~i~

(A) and Amax (A)
~ 
respectively.

With the above notations and definitions ((4.1) — (4.14)) established,

which will be assumed throughout the remainder of this section, the

main result of this dissertation can now be stated.

THEOREM. Suppose tha t the fol lowing aeswnpt ions (including the

structure inrplied by (4.1) — (4.14)) are satisfied:

~~~ is a nonincreaeing ~equenoe of posit ive constants

converging to zero such that whenever

I k—i I < N, 

~~ 
< h N < ~ and 

kL ~k =

‘12) Pk 1IF’k hl 
a.~ . 0 as k +

i n
‘13) n ~ F a.~ . R as n + ~~

,
kirzl

‘14) there exists a random vector S £ #~ Buch tha t

Sn = U~C~ 
a~~. S as n ÷ —, and

k=1 - -

‘15) lF ~(S - S~~1) I  a.÷e. 
~ as n + ~~

~~~ iv a.~. ~ ~~~ 
+ —. 

V

n

Regarding assumptions Al through A5, assumption Al is seemingly

the only assumption similar in spirit to other stochastic approximation

results, and Vis easily satisfied by p~ — 1/n, for example.

~~~~~~ ~~~
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Assumption Al is the only other readily recognized assumption, and

can be interpreted as a kind of ergodicity assumption. Indeed,

assumptions A2 through A5 involve the a.a. convergence of sequences - 
- 

-

of random variables, and the conclusion of the theorem is the a.s. 
V 

-

convergence of still another sequence of 4andom variables. The prin—

cipal advantage in using such an approach is that assumptions A3 through

A5 are in a form suitable for (but not limited to) application of the

results of Serf hug ([58] and [591). The end result is sufficient

conditions on the “decay rate” of the autocovariance functions of the

sequences 
~
Tk1 and 

~~k
1 which imply Al through A5. Examples in

which these results are applied to the algorithms discussed in

Chapter II are given in Section tV—B. V

As mentioned previously, the proof of the above theorem relies

heavily on the techniques of Albert and Gardner [57]. The proof is a

direct modification of the proof of Theorem 6.3 of[57];however, the

algorithm treated in Theorem 6.3 of [57] is quite different from (3.1)

and the assumptions above are seemingly less restrictive. Before

proving the theorem, several useful lemmas will be established . Lemmas 1

and 2, which are similar in nature to Theorem 6.1 of (57), make use of

assumptions Al , A2 , and Al to show that IIQ i~
II a~s. 0 as n + . The

assumption that each F is symmetric and non—negative definite can

be relaxed by applying Theorem 6.1 of (57]; however, for adaptive signal V

processing applications, F is almost always some form of a sample

covariance estimate, hence, the simplification resulting for symmetric

F seems worthwhile.n
LEMMA 1. If A1-A3 are satisfied, then there exists a sequence of

integers {vk) with 1—v
1
cv
2
<v
3
c... such that, with — vk#1 - vka

— ~~~~~~~~~~ - — -~~ —____ ~V~ V •



4/

~ “k’ vk~~,. . ., v~~~-i I, and k = 1,2,..., ~~ p,,~ < < 
~max <

(ii) 
~k~

1 
~~~ (‘~~~~ F~) = ak 

a.~ . ~, (iii) p~
1 

A~~~,(j  ~~~~~~~~~~~~~~~~
~ k

and (iv) there exists a 6 > 0 such that ak 
a..~. ~ The sequences

(v i, 
~~k 1’ (a k

}, and 
~~k 1 may all be random sequences depending °n

the particu lar realization of the sequence {F k }.

PROOF. Define V

n
Di 1
“n n-i k - 

—

k-i+1

Let £ > 0 be given such that O<c<A i (R ). Assumptions Al—Al imply

that for any fixed £c{O,l,2,...}, ~~ R~ 
a~s. R .  It follows that

lim A (Ri) a~;s. A (It ) .  Hence, it follows that there exists an nn9~ m m  n mm xx £

(possibly random) such that lX min0txx) — Amin(1~ 
)l aV~

s. c; thus

0 c A
15~~

(R~~) — c a.~s.A (Ri ). Since n
~ 
is f inite and iis arbitrary,

(i), (ii), and (iv) follow. A similar argument applies to (iii). Q.E.D.

LEMMA 2. If Al, ‘12 , and ‘13 are satisfied, then IIQ 1~ II a.~~. ~ 
V

n -‘- — .

PROOF. It follows from A2 that there exists a random variable

M, l<M<~ such that ¶pIII_UK
F
k II 

a~s. M. Keeping the same notation as

in Lemma 1, for any n, let K — K(n) be the largest integer such that

c n so that vK.~
n
~$yK+l

_i. Then

— IT (I - u~F~ )Q
1 —l (4.16) 

V

J V K

and hence,

V ~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~ _

~~~~~~~T ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

V
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hl Q L1~I I 
j V

K 

— 
“l~~Vl ~ h O , ,~~

_
~hI 

aie. ~~~~ ~~~~~~~~~~~~~~~

(4.17)

Consequently , it suffices to show that fjQ1 v ~~~ 
a3s. 0 as K~~‘K

with n over some subset of the positive integers. Noting that

~-l 
“K+1 1 K-l

Ql,V
K
_l 

k=l 
~~~~ 

(I — ~1
F~ ) — 

k—l ~
v
k~ 

v
~~l~

l, (4.18) V

and defining rk —l“k’ “k+i

K—i

—1 
II r

k . (4.19)
“K k—i

Expressing rk as V

Vk+l
_ l

rk u (I — p
2;
F
2;

) = I — ~ ~~~ + ~ p 2; ii~ F2; F2;1 2 1 2

+ ~ (~1) q U 2; ~~ 
...p 2; F2; F2; .. .F2; , (4.20)

q 3  
~l

>
~
f• .>i 1 2 q 1 2 q

~~~~~~~~~~~~~~

it follows that (for p < 1)
V
k

I r k11 ~f .  1 - 
“k+l~

1 
X
i
(
~~~~

F
~

) + 
~~ ~~i 

~~ax(j~j
F
j
)

a?. 1 - PV~~1 l
P
k
a
k 
+ 

Vk q~: 
(P~~~Y)~ (4.21)

from Lemma 1. From Al and Lemma 1, there exists a positive integer

k0 (possible random) such that for all k > k0, 
V

_ _________- -
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lir khl a~s. ~ — 

vk+l—l min 6 
a~s. exp{_+uv —l~min 

~~~~‘

V (4.22)

V 
since 1 — x < e’

~~ for all real x. Hence, there exists a random

variable M such that for all K > k
1 0

K-i
11Q 1 _~~~~

j 

a~s. M~ IT hh ’~ II“'K k—k
0

a~s. M
1 
exp(_+pmmn 6 

K—i 
p . (4.23)

k—k k+1
0

It follows from the above and Al that (lo ll 
a4s. o~ Q.E.D.

LEMMA 3. (Albert and Gardner)157J . Let (A k
) be a sequence of

square matrices. Then for all 1<k<n and n>1,

~ 
[ n (I - A~

) ] A
~ 

— I - n (I - A~) .  (4.24)
J= k -v=a i-i- i,=k

LEMMA 4. (Toeplitz Lemma)[60]. If x,~ + ~ and the coefficients a
p~

satisfy (i) for fixed p ~ 1, a + 0 as n + ~, (ii) there exists

a K such that for all n > 1, ~ (a . f < K, and
i—I ~~

(iii)  1L a~~ = A + a as n + ~‘, then x’~ = ~~a .x. + a~ . (4.25)

PROOF of THEOREM. Equation (4.12) expresses V~~1 
as

V~~1 — + A .  It has been shown in Lemma 2 that IIQ i~II a4s. ~
It remains to be shown that IA~I 

a4s. 0. From (4.11) and K, with

S0 
— 0 and ~~~~~ -‘ I,

________ 
i V

1

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

VV V~~~~~~~~~~~~~~~~~ V V V  —- ~~~~~~~~~V ~~~~~ 
~~~
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An 
— 

k~l 
k+i,n Sk 

— J1 k+l,n Sk_l

— 

k~l
1
~~

I 01 1 ,n~
5k-l + Sn

= 

~~~~~~~~~ 
- 

~~~~ 
- 0k+I,n~

5k~l 
+ S~

= — 

~ 
0k+l,n PkF

kSk.l + S~ . (4.26)
k-h

By assumption A4, there exists a random vector S c ~~ such that
a4s. S as n + ~, hence, (4.26) may be rewritten as

An 
— 

~ 
0k+l,n I~k

}’
k~~ 

— Sk_i) — 

~ ~k+1,n 
Pk

F’
kS + Sn~ 

(4.27)
k—i k—i

From Lemma 3,

~ ~k+l,n PkFkS = (I — Q
1~~

)S (4.28) V

k—l

so that

— 

~ 
0
~~l n  ~

1
k
F
k

(S — Sk...l) + S~ — S + 0l n  s . (4.29)
k-h

Since 5 a4s. S, and a4s. 
~, it now remains only to show that

for

~ ‘k~1~~~~-’~ 
Mk
F
k

(S — Sk_l)l (4.30) 

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 
~~~~~~~~~~~~~~ 

~~~~~
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b 
a4s. 

~ as n -
~ . Using the same notation as in Lemmas 1 and 2,

with K — K(n) the largest integer such that < n so that

and r
k 

- 

~~
V

k~~
Vk+l

_l , 

V

V 
b
n 

— 1° VK, fl :~: JEJk K 
P
J
F
J

(S — S~_1)

+ 
~ ~¼+~~~,fl ~~~~~ 

— Sk_l)h (4.31)
k—vK

which can be bounded as

K-i K—i p
Pt ma

~
cpmax 

~ 

fl 11r~11 i~, dk + ~max
M max 

~~~d

(4.32)

where dk is defined by V

dk 
— uuiax lF~(S — S1_1)~ . (4 33) V

JCJk

It follows from AS that dk 
a4e. 0 as k 4- , so that it now remains

only to show that for

K-i K-h
~ IT ll r~hl uv 

d
kk—i £—k+1 k

a4s. 0 as K + ~ with n over some subset of the positive integers.

Defining 8
k 

— 
~~~ ~~~~~~ ~~~~ 

3, from Lemma 2 there exists a k
0 

such

V that for all k > k , II rkhI a~s. ~~ 
— Bk. 

It is assumed that k is

large enough so that < 1 for all k ~ k0. Proceedings for all

I V

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ___
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t k—1 K—l k—h
o K—I K—I

e
~ ~~. ~ 

IT f i r1 fi n l l r ~ fi 
~~ 

dk + IT IIr 2;II ii d
k-i i—k £—k+l k k—k £ k+l0 0

k K-i k—h 
K-i K-la~s. M ° IT (1 — Bi) ~ uv dk + IT (l—B t)Bk(u dkB

’).
i—k k—h k k—k £—k+l k0 0

V (4.35)

Def ine

n
a = IT (1 — 

~ 
)B . (4.36)iii Q.=i+i ~ i

Clearly , for all f ixed I > k , a + 0 as n + .— 0 iii

From Lemma 3,

~ (a 1( 
= II (1 — 

~L~
8i 

— 1 — II (1 — B1
), (4 37)

i—k i—k i—I+l i—k0 0 0

which converges a.s. to 1 as n 4- ~, so that by Lemma 4,

V 
‘
~~ J~ 

aK_l,k
(Uvk

d
kBk

)_ k4,,,, (uv
d
kB~~
) . (4.38)

From Al and the definition of

2p d

TMv 
d~B
’ — 

“k 
~ 6 ~~ . 

2(6Pmin)~
1
h
p 

d
k (4.39)

V k v ~-i mm max

;, and hence, from A5,

~~~~~ 
dkB;

1) a.s. 0 . (4.40) 
V

k 
Q.E.D.

With the theorem establiahed , considerable attention will now be

V given to the establishment of corollaries which will guarantee under

~~~V~~~Vr, VV V 

~~~~~~~~~~~~~~~~~~~~~~ 
-.
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extremely realistic conditions, that assumptions Al through A5 are

satisfied. It will be expedient to make use of the order notation,

Q(.), e.g., f (n) = O(g(n)) if f (n ) /g (n)  is bounded as n + .

A worthwhile simplification of assumptions Al through AS results

in the case (fF 11 is a.s. bounded. In this case, the following

corollary is easily established.

COROLLARY 1. If TM k 
= O(k~~), ~ 

kp~< 
> ~ and 

~
‘kIl is a.a.

bounded, then Al , ‘12 , and ‘15 may be deleted and the theorem remains
U

true .

PROOF. It suffices to consider = k~~. Assumption Al is trivially

satisfied. That A4 implies A5 can easily be seen by noting that there

exists an M a~s. such that IF (S — S ) l < (IF Il ls — S a~s.
n n—i — n n—h

M .IS — Sn_il ’ so that (s — Sn 1 1 
a4s. 0 implies that

• lF~
(S — S~_ 1)f 

a4a 0 as n ~~- 
~~. Assumption A2 is easily established

by the Borel—Cantelli Lemma and the Chebychev inequality as follows.

For all c > 0, Pr{UkI(FklI > ~~~ Pr{flF~j( > < ~2 ~—2 E{IIFkII2},
V and since k 2 is summabie, PkIIFkII 

a4s. 0 as k -‘ . Q.E.D.

The Borel—Cantehli Lemma, together with probabilistic bounds, such

as the Chebychev inequality, the Markov inequality, or the Chernoff

bound, provides a frequently used technique for establishing the a.s.

convergence of sequences of random variables. Unfortunately, the

available probabilistic bounds of ten approach zero but are not sununable

(unlike the case presented in Corollary 1). The work of Serf ling ([58]

and [59 1) provides usef ul techniques by which the above diff iculties can

be overcome. For a more complete treatment on a.s. convergence, the

interested reader is referred to the recent text by Stout [611 . Before

* -. -- -_ _

- -— - —
~ 

- -.-
~~ 

-
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developing the machinery necessary for the proof of Corollary 2, the

a.s. convergence of I s  
— Se_l i is discussed in order to illustrate

the concepts involved.

For all c > 0, the following bound is easily obtained from the

Chebychev inequality:

> 
—2 E ((S—S0_1f

2} , (4.41)

where it has been assumed that E{(S — Sn_i l
2) < — . It is noted that

— en— i. is given by (formally)

S — S~~1 
— 

~ 
, (4.42)

k—n

so that

E{IS — S~_1I
2} — ~ U~P2;E{CjC~) . (4.43)

k’.n £n

Suppose for the moment that E{C
I
C
L
} — 6

k,&’ and that —

where 6
k ~ 

is the Kronecker delta function

fi, if k — i6k,2. ~o, if k ~ £ 
• (4.44)

Then E{(S — S~_1I
2) — O(n~~), which is seemingly the fastest rate one

can expect, so that it is indeed fruitless to attempt the direct apphi—
H

cation of the Borei—Cantelii Lemma to (4.41) to obtain the a.s. conver-

gence of f s  — S
1f. However, while the sunmuability of E{fS—S~_1I

2}

seems impossible , it would seem reasonable to require that

E{lS — 

~n 1 ’
2

~ 
-‘- 0 as n 4- 

~~. Although mean-square convergence and V V

a.s. convergence are not equivalent, in view of A4 it does not seem

unduly restrictive to require that 5n 
m4s. ~ 

. . 
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Suppose that E{ IS  — 5 11
2) + 0 as n 4- ~~. Then there exists 

V

an increasing subsequence {n.~) such that n.~ + as k + and 
V

E{lS - S _1H < (445)
k-i

hence f s  — S a4s. 0 as k -‘- .V1
This fact can be used by noting that for all n c L.K, with

Lk 
—

— Sn 1 1 I ~ 
+ 

~in 
~~ k+l

c max 
~ 

+ is — s _
~

I . (4.46)
£ c Lk i_i

For all sequences {nk) satisfying (4.45) and such that

max ~ 
a3s. 0 (4.47)

£ c L
k ~~L

as k ÷ 
~ 

— 
a4s. 0 as n -‘ ~~. The work of Serf ling ([58]

and [59]) is easily applied to terms like (4.47)

The following lema, a multidimensional version of Theorem A of

[5w , will be shown to be invaluable for the establishment of conditions

similar to (4.47). The proof of Lemma S is a simple modification of

that given in [58 ] and will be omitted . 
V 

-

LEMMA 5. (Serf ling) [58]. Let (x ~ } be a sequence of random vectors,

x. c R~
’ having finite “variances” = E{(x~ - E(x~))~ (x~ - A’{x~))}.

V 

F~~ ~~~h matrix ‘a,n ~ a#1’ ~
J Xa+n

)  of n consecutive x
i
’s

V ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ V ~~~~~~~~~~
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V

let denote the joint distribution f unction and let V

a4-n
S 

~~~
= ~~ x. , (4.48) • 

-

a, V

M = max{ IS I~
...
~ Is I), and let g (F ) be a ftsnotionaia,n a, a,n a,n

depending on Fa ,~ • Let a0 be an arbitrary but fi r ed integer and

let v > 2. Suppose g(F~~~) ÷ g(F~÷~~~
) ig(F~~ ÷~

) f o r  all a 
~~
a
0

and 1~k<_1c#t such tha t E~ ISa nlV } < g ½~(F ~~~) for all a ~ a0 and

all n?~l. Then E {M ~~~) < (log
2 

2n)~g½\
~(F a n

) for all a >_ a0 and

all n>1 .

A rather straightforward modification of Lemma 5 will also be

needed and is presented below as Lemma 6. The proof of Lenina 6 is

virtually identical to that of Leumna 5 and thus will be omitted.

LEMMA 6. Let {z.) be a sequence of random vectors, r. c

having finite “variances” = E{(x~ - E{x~
))’(x

~ 
— E{x

~
})}. For each

matrix 1
a,n 

= 

~an~i’ 
. . . ,x )  of n consecutive x, 

‘e let Fan
denote the joint distribution function and let

5 =  ~~ x~ ,, (4.49)
‘ i=a-n+l

Ma,n = 7??C~~ I3a,lI
~ ”J  I Sa,n I } and let g (F ~~~) be a functiona l

~~ ~a, n Let a0 be an arbitrary but fixed integer and

let v >2. Suppose g(F k~ ~ g (F k i~ ~ g (F k÷t~ 
for all

lIkIk+&<a-a0 such that E{ ISa,,j1 “}< g ~” ~~~ ~
) for all l~n<a-a0.

Then E{M~,~
} 
~ ~~~~ 

2n)Vg½V (F ) for all l~n<a-a0
.

V Lemma 7 below makes use of common procedures to obtain bounds on

double sums of symmetric functions, such as autocorrelation functions.

si— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~~~~ V V~~ ~ V V ~~~~~~~~ ~~~~~~~ V ~~~~~~~~~~~~~~
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The results of Lemma 7 will prove invaluable in establishing “slowest

decay rates” of the autocovariance functions of 
~~~ 

and 
~~~ 

for

“gain sequences” 
~~k

1 of the form Uk — O(k~~). The technique of

proof will allow some flexibility regarding the choice of sequence

LEMMA 7. Let ak 
= a 

k and p(k , t) — p(t,k) be real valued
,

f unction. defined for all non-negative integer. 1c~ £. Then f or 1cnQn,

define

rn = 
‘

~ ‘f Uk £ p(k,i). (4.50)
n, k—n £=n

Then

rn-n rn-u rn
(a) 

~z m 
= 2 ~ ~~ k p (k,k#u) * ~ ~,< k 

p(k,k).
u=l k’n ‘ k—n ’

Suppose f urther tha t there exists a rea l valued function f(u) such

that for all u = 0 ,i,2,..., and f o r  all

lp( k ,k#u) l < f ( u) , and f (u) = O(u~~). If Uk ,. 
— 1, then, f or Zarç~e

r n — n  and v— i,

(b) l r fl m I = O((m - n)Ln (rn - n)) . 
V

Finally, if 
~
1
k,i 

= UkULJ Uk O(k 1), and v > 1, then

(c) l~ •l =

PROOF. Let u — k — £ in (4.50). For u ~ n—m,n+i—m,...,—1; k —

n+1,. ..,u4in. For u — 0; k n,n+l,. ..,m. For u — l,2 ,...,m—n ;

k — u+n,u+n+i, ...,m . Substituting into (4.50),

I .  

_ _ _ _

-- - - - - - ---

-- - ~~ - ~~~~~~~~ ~~~~~ —- V~~~~~~~V _ ~~~ ~~~~~~~~~~~~~~~~~~~~ -~~ _~~~~~ V V~~~~~~~~~~~~~~~V ~~~~ - 
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-l a+u
- I I ~~~~~~ p(k,k—u) + I Uk k p(kk)u n—m kn k—n

+ mr 
~ ~~ k- p(k,k—u) . (4.51)

u’i k’.n+u 
U

Making the transformation k* — k — u in the last series and making

use of the symmetry relations, (a) follows.

Suppose that Uk,i — 1 and lp( k ,k4u)t < f(u)  — 0(u4) for all

u — 0,1,2,..., and for all k — 1,2 Then

w-n
‘~ n m ’ 

< 2 ~ f (u) (in—u— n+l) + (m—n+1) f(o). (4.52)
u 1

For all l<L<m—n, for some C
1 

> 0, and for C2 
— max f (u),
lCuCm—n

~
‘n,m t I 2C2 (m—n) L + 2c1(m_n+l) 

~ 
.1

u 1+l V

_ 2S (m_n_t) + (a—n+l) f(o) , (4.53)

which, for some C3 
> 0, yields

< 2C
2
(m—n)Z +2C

1
(m—ri+1)in(~~~) +2C 11+ (m—n)C3, (4.54)

since

m-n rn-n 
- in (

~~~~~~~~ ) 
. (4.55)

u L+1 £

V It follows that 
~n,m ’ 

— 0((m—n)Ln(m—n)) for large rn—n by letting

£ — £n(a—n).

Suppose now that Ukt  
— UkUL~ 

Uk 
— 0(k4) ,  and that there exists

an f (u) — O(u~~
) with the desired properties. Then since it suff ices

to consider only Uk 
‘~

— 

~~~



- 

‘~n,m t .5 2 1  f(u ) I k(k+u) + 1L -~~~~ 

(4.56)

- 

For all lcucm—n (n)-2), 
V

~ x(x+u) 
— I tn(~~~~X~~

11) ) . (4.57) 
V

Similarly, for 2cn<m, 
V

V m m V
r 1 r d x  1 1
L -

~~~~~~I j  
~~~~~~~ 

. (4.58)
k n k  n-i x

For all lcuCt<n<m ,

V 
£n( (m~~~~~~

_]) 
.5. L(~~~~’) (4.59)

f or all lIL<u(n<m_n,

£n( ’~~~) .5 in 2 (4.60)

- 

and for all ncucm-n,

~ 
in u . (4.61)

Hence, for all i<t<n—2<m—n—2, with C1 
— max f(u), 

V

I~n ,m I I 2C1 £ £nC~~~
1) + Un 2 ~ 

f(u) -
u L+l

+ 2~~ f (u) £n(u) + f(o)(—1j- — A) . (4.62)

g~.nce f (u) — 0(u ’5, there exists a C2 
> 0 and an £ such that for

V 
all £ ~ £ , f(u) ~ C2u~~, so that

~VV - 
-

___________ 
I~V
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‘~n,rn ’ 
I 2C1 

£ Ln(~~~j
1) + 2C2 in 2 1  

~~+l
V 

+ 2C2 1 
in(u) 

+ f(o) (
~
!r — ~) . (4.63)

Thus, for some fixed C3,C4,C5,

‘~~n ,mJ I 2C
1 

£ £n~~~~~~) + C
3

(L)~~ + C4(n~l)~~ + c5 
£n~n~l)

(4.64)

Substituting £ — n8, ~ > 0, in (4.64), and using the fact that

£n(l + x) 
~ 
x for all x > —1, one obtains

I Y n ,co I — 0(2n2
~~~ + n

B
~). Q.E.D. (4.65) H

Finally, if B — (v + 2)~~ , then — 0(~~V/V+2)~
Enough machinery has now been developed to prove the following

useful corollary. V 

V

COROLLARY 2. Define

V 

p
0
(k,i) = E{C

~
CL) (4.66)

and 
~~~~~~ 

= IIE{FkFL
} — R~~II . (4. 67)

Suppose that there exists a real-valued function f(u) = O(u~~) (v>l )

such that

max { 1 p 0(k,k-*f -u) I ,  P~ (k,k-tu) }  c f ( u) (4. 68)

f o r  all positive integer k and for  all non-negative integer u.

Furthei ’nore, suppose that U k — 0(k 1), 
~~~ 

kii~ > 0~ and E( I I P k II c )

(q > 2v~~(v ÷ 2) )  is bounded. Then Assumptions Al through AS of 
V

th. theorem are satisfied and hence, IV~I 
a~s. 0 as n -‘- .
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PROOF. First, consider assumption *3. Define S
a by

a+n
Sa ~ 

— I — R,~ )w, (4.69)
k-a+1

where w £ R~. Clearly, assumption *3 is satisfied if and only if

!~~I Sa ,n I a~s. 0 as n + ~ for all w c Rt’ and for all a — 1,2,....

Define H — max{~S I ,...,Js I }. Let {n } be an increasing
a,n a,l a,n k

sequence of positive integers such that n.K 
4- as k + ~~. For all

n~Ifl11\.~~1~l.

0’
~~

ISa n I .5. ~ç
1
lS flk ll + l:i

k 
Ma k l,~~+l

_j
~ 

(4.70)

Clearly,

a+n a+n
E (IS ~I

2} — I I w’E{F
k
F
L 

— R
2 }w

‘ k a+l £~‘a+l

2 a+n a-f-n
5. (w~ I I 

~~~~~~ 
— 0(n in n) , (4.71)

k—a+l £—a+l

from Lemma 7. Letting — k2, n 2 E{IS5~~I 2) is summable from (4.71).

The Chebychev inequality and the Borel—Cantelli Lemma thus Imply that

n~~ I Sa ,~~ _l Ia45 O as k + . With g(F
5~~
) — E {I Sa n I

2 }
~ 

Lemma 5 and

(4.71) easily yield E{n
~~
M
~~~~_i,r~~1

..~~
} — 0((Ln k/k)3), which is sum—

mable. Hence, n~’N~~~~~11,~~ 
a4a. 0 as k + so that , by (4.69) , 

V

a4s. 0 as n + and £3 is satisfied .a,n

Now consider AS. Let {n.~} be an increasing sequence of positive

V integers such that + — as k + and let Lk 
—

For all n e L .~

V 
~~~~~~~~~~~~- :~~~~~“
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— S
~_ 1)I 

— IF~( 
~ 

P1C1 + S 
— S 1)I

1tk+l~~
I ( I F~l l ( I  I + ~s — S _

~
I)

i-n °k-f 1

~ 
n~~ max IIFiIIn~ 

max ~l 

~~~~i c L k i c L
k i—i

+ 0 8 max IIFiIJn~IS — Sn~~~_ lI~ 
(4.72 )

where as yet, B > 0 is arbitrary. V
Def ining

a
s — I uiCi ‘a,n i—a—n+l

and Ma n  max(ISa i I,...,ISa n (}. (4.72) becomes 
V

I F~ (S - S~_1) I I n~ max IlF i II (n~ ~~~~~~~~~~~~~~ + n~I S - s 1~).

(4.74)

Since

a a
E{IS ,

2} — I (i,J) , (4.75)a n  i—a-n+i j—a—n-fl

with — E{ISan I
2}
~ 

Lemma 6 applieS so that

< (log2 
2(n.

~~1
_n
k

)) 2 g(F ) . 

V

(4.76) k

~ 

- V 
V V

—
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From (c) of Lemma 7 , g (F — — ) — 0(i~~\+2). From (4.43) and
~k+l ‘%+i 

nk

Leiima 7, E{IS — S _~ I
2 

— 0(~~~~~2). If and B > 0 can be

chosen such that (i) ~ k~~ < (ii) ~ ~~~ EflS — s _~ ,
2} < , and

k—i k—l nk+i
(iii) I ~~8 E{M2 

—l —n ~ 
— , then the Markov inequal ity, the

k-l ~
‘k+l ,nk+l k

Borel—Canteili Lemma, and (4.74) will show that IF~(S 
— 

a4s. 
~

V 

as n -‘- — . It is easily verified that for n.K 
k
a, q4<8<v(2v+4)1,

and a > (v+2)(v—28(v+2))
1, (i), (ii) ,  and (iii) are satisfied.

Finally, 
~k 

— 0(k~~), E{IIF~ II~’} bounded , and 
~~~ 

ku~ > 0 Imply Al

and £2; while (ii) and (iii) Imply £4. Q.E.D.

B. Application of Corollary 2

In this section, the results of the previous section are applied V

V 

to the algorithn3 discussed in Chapter II. In order to apply Corollary —

2, it is necessary to establish asymptotic decay rates on

and PF
(k ,L) , as defined by (4.66) and (4.67). Define P~ (k~2.) —

IE{Pi~
Pt} 

— P’P~. From (4.66), (4.4), and (4.5),

IPc(1c,L)I — IE{C
~
C
~
)I V

— IE{Pi Pi
} — U~

(E{FLPk} + E{FkPt }) + w
~

{F
k
F
i

}w
oI

I IE{Pi
P
~

} - + I PP — V~E {F
LPk}I

+ ~~~~~~ 
— w’E (VkPi}I + Iw~I 2 I I E FkFL — R~JI V

<~~~(k~i) + v0 1 IR~~P — E{FLPk}I 
V

+ Iw0I.IR~~P - E{FkPL)I + IW0 I pF(k,L) . (4.77) 1
Hence, by defining

_  

-J

-V V 
VV ~~~~ ~~~~V ___ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~
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— ( R P  — E {F
k
P
i3I , (4.78)

can be bounded as 
V

V 

I p c~
l(,t ) I < ø ~ (k~i) + Iw0Ip~ ,(k,L) + IwOIp F~,

(L ,k)

+ Iv0I
2
P~~k~L . (4.79)

With (4.79) established , it is easily seen that in order to establish

decay rates on Pc
(k
~ 

), and PF(k,i), it is sufficient to consider

p~ (k ,i), p~~ (k ,& ) ,  and PF
(k,i). Before treating specific examples,

expressions for p1,, p~~ and will be developed which are

sufficiently general to cover most of the algorithms treated in

Chapter II.

Let {X } and (N } be sequences of Rn—valued zero—
i i—

mean random variables, and let be a sequence of real—valued

zero—mean random variables. It is assumed that E(X.~ Ni~ .U} — E{N
k N~~~

}

and E{skN~~U
} — 0 for all integers k and u. The ijth element of

a matrix A will be denoted by (A)~~~. It is assumed that all fourth—

order moments correspond to stationarity; e.g., E{BLSi+i(X&+j)m
(XL+k)m }

is independent of £. Define

R ( u) — E(X.KX U
} , (4.80)

P (u) — E{s
k
x.K+u
) , (4.81)

and 

p5
(u) - E(sksk~~

} . (4.82)

Consistent with the notation used previously, define R (O) — R ,

and P (0) — P.
5

V

~ 

-- ~~~~~~~~~~~~~~~~~~ V~~VV ~ --
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The folLowing def tnttlona for and will be sufficient for

the purposes of the present analysis. Define

~
‘k 8kXk , (4.83)

and

— X~Xj~ . (4.84)

Clearly , E {P k} = P and E{F
k
} R,~~, so that (4.6) and (4.7) are satis-

fied. Most of the algorithms which have been proposed for use in

adaptive signal processing use — XKX
~ 

and either 
~k 

— skXk or

— P — E{s~X.~). In case 
~k 

— “~ P~(k~i) 0 and p~~(k,&) 0, so

that in this case one need only consider

First consider ~~(k,2). From (4.84) ,

E(PkF~~U
) — E{X

kXQL~~
X ,~

} . (4.85) 
V

In case X~ is a multivariate Gaussian Random Process (GRP), it is

easily shown that from (4.80),

E{X~X~X .~ Xj~~~} — R2 + R2 (u) + R,~~(u)tr(R
~~
(u))i (4.86)

by recalling that if Y1,Y2,Y3, and Y4 are jointly normally distri-

buted zero—mean random variables, then E{Y172Y3Y4
} — E(Y1Y2}E{Y

3Y4
}

+ E{Y1Y3}E{YjT4} + E(Y1Y4}E{Y 2Y3}. In general , define ,c1(u) such

that

E{xkcx~.,~x.~~
} — R2 + R2 (u) + R~~(u) tr(R,~~(u)) +

(4.87)

so that

— R2 — R2 (u) + R (u) tr(R
~~
(u)) + K

1
(u) . (4.88) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~~~~~~~~~~~ V 
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Next consider ~~(k.i). From (4.83),

E{PiPk~~
} — E{S

kX~
8
~ ,.lXk.~~

} . (4.89)

In case 5k~
Xk~

5k.~~ 
and are jointly normal, then

E{skX~
s
~~U

X.
~~
} — PP + p5(u)tr(R (u)) -F P (u)P (u). (4.90)

In general , define c2 (u) such that

E{skX~
sk~~

X.~~
) — P~P + p (u)tr(R (u)) + P (u)P (—u) + c2 (u) .

(4.91)

Then ~~ (k ,k+u) can be determined from

E{P~P~ ,1} — P P  — p
5(u)t~

(R,~~(u)) + P ( u)P
5(—u) +

(4.92)

It is important to reiterate that in case — P, then ~~ (k k+u) 0.

Finally, consider ~~~(k~L). From (4.83) and (4.84),

— E(xkca~~
iL
~~
} . (4•93) V

Proceeding as before, (4.93) can be expressed as

~~~~~~~~~~~~ 
— R P  + P (—u)tr (R (u)) + R (u)P (-u) +

(4.94)

where ,c
3(u) 0 in the normal case. Hence, p~~(k,k-4-u) can be

determined from (4.78) and

E{F
kP~ .U} — R P  P (—u)tr(R (U)) + H (u)P (—u) + ,c3(u)

(4.95)

Again, in case t’k — P — E{akX.K}, then p~~(k,i) 0.

V J A useful fact fcr  the application of the above results is that

for a pxp matrix A,

— 
V - 

V 
— - - V -~~~~~~_ V~~~ V

~1

V V~~VV VV V~V~VV ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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V 

: h A il I I ( ~ (A)~ ) 1/2 , (4.96)
i—l i—i

i.e., the norm of A is bounded by the sum of the Euclidean lengths of

its columns (or rows), as shown, e.g., by Rudin [62]. Define

g1
(u) — max (H (u))

i ~I (4.97)
l(i,j5.p 

XX

and

52 (u) = max I(P (u)) I ; (4.98)
lIa.5p S m

then, from (4.96), ilR~ (u)lf < P
3/2g (u) From (4.67), (4.88), and

(4.97),

~~~~~~~~ IP
3 
g~ (u) + I I K l(U)II . (4.99)

From (4.92), (4.97) and (4.98),

P~ (k~k+u) Ip .1P5(u)1g 1
(u) + p.g~(u) + 1K 2(u)I. (4.100)

From (4.78) , (4.95), (4.97), and (4.98),

V 

~FP~~ ’~~~’~ 
< P 312

g (u)g (u) + P
2
g1

(u)g
2(u) + 1K 3(u)i. (4.101)

Now, from (4.79), (4.100), (4.101), and (4.99),

V ip c(k,~~
1)I Ip .~ p

8(u)Ig 1
(u) + 2p2l w I g

1
(u)g

2
(u)

3 22 2 2
V + i’ Iw~,I 51(u) + p 52(u) + iw~,I li~ci(u)hi

+ phic 2(u)I + 2 1w 1 .i K 3(u)I , (4.102)

by noting that g
1

(u) and g
2(u) are even functions. Finally, by

defining

g(u) = max (g 1(u) ,  g2 (u) , 1p 5(u)i) , (4.103)

__  —~~— ~ V 
~
_ V__VV

V V

- - - - 
~~~~~~~~~~~~~~~~~~~~~ 

- 
V

~ 
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there exist positive constants a1,a2,a3, and a4 such that

max (PF(k,~~~
), IP c (1

~
,
~~
l
~~ 

V

I a1g
2(u) + a~ k1(u)II + a31,c2(u)I + a4iK 3(u)I . (4.104)

THE NORMAL CASE

In case {x~}~ {N~} {S
j

} are GRP’s, then l l K 1(u)II tK~ (U)I

k3(u)I 0, so that

wax (PF(k ,
~~

),lp c(k ,k
~
)I) 5. a1

g2(u) . (4.105)

Also, in the normal case, E {i I F ~ I i 7 } is bounded. Hence, all algorithms

of the form of (3.1), with F
k 

— X
kXi, ~k 

— skXk or 
~k 

— P — E{skX.~},
and Uk 

—O (k~~), u rn kuk 
> 0, satisfy the hypotheses of Corollary 2

and hence, converge almost surely provided that g(u) in (4.105) is

O(u~~/2 ) .  This result suggests that essentially all one needs to do to

establish a.s. convergence for this class of algorithms in the normal

case is to ensure that all scalar correlation functions y(u) which

can be computed for (S
j
}~ {x~}~ satisfy i~~ u

]P’2
hy (u)i < — .

EXAMPLE 1

Let {n(t): — < t < co} and ( 8(t ) : — < t < °°} be zero mean

jointly wide—sense stationary finite variance Gaussian random processes.

Define x (t )  — n(t )  + s (t ) ,  and assume tha t E {s( t)n( t  + t )}  0 for

all t ,-r . Define the “data vector” X (t) — (x(t), x (t— D) , ...
x ( t— (p — l)D)) .  Suppose that it is desired to form a linear MMSE estimate

V - 

of s(t + a) at t — kT , k = 0,1,2, ... , based on the “data vector” 
V

V X~ — X(t)it_,kTI where D is an integer multiple of T. Denoting

s( t + c t ) I~~,kT by 5k’ it is easily shown nat the desired linear MMSE V

V 
estimate of is given by 8k — W X

k~ 
where w is the (assumed

I
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unique) solution of R
~~

w F, 
~~~ 

— E(X ~Xj I~ and P = E{s
kXk
). Defining

— E{x(t)x(t+r)}, y~ (r) = E{n(t)n(t+t)}, .y ( r )  — E{s(t)s(t+-r)},

R (u) — E(X
k
X U

} and P
5

(u) — E{s
k
X.
~,.~
)
~ 

it is easily seen that

(R
~~~

(u))
jj 

— .y~~(uT + (i f)D)

V 

= y5
(uT + (i—j)D) + y (uT + (i—j)D) , (4.106)

and

P (U))
m ‘~ y (uT — a — (m—l)D). (4.107)

Def ine S5(f) =F fy 3(t)), S (f) F{y (t)} to be the spectral densities

for the processes s(t) and n(t), respectively. Suppose the signal

spectral density is the rational density ,

b
2S (f)  = 2 2 (4.108)

f + b
1

and the noise spectral density is the ideal lowpass density,

b3 ~ l~ I 5.8
S (f)  = , (4.109)
n o , I f I > B

where b ,b , and b are positive constants. Then
1 2  b3

y (r )  ~~ re 2
~
’i~~ 

‘ (4.110)
S 1

and

— 2b3B 
si~~~irBt (4.111)

It is easily seen that for this example, g(u) defined by (4.103) is

V o(u 1). Suppose that P is known and consider the algorithm

V Wk+l — 14k + ~(P 
— XkcWk), 

(4.112)

V - - 
for k ~ 1, with arbitrary. Clearly, all of the assumptions of 

V



Corollary 2 are satisfied and hence, Wk 
a4s. as k + . Now,

suppose that P is unknown but is available. Then the algorithm

- W~ + ~
(skXk 

- X.
~cWk

) (4.113)

will converge a.s. to w0. It is easily shown that algorithms such

as 

I.
— W

k 
+ ~ (P — -

~~~ I xLcWk) (4.114)
L—k-K+l

and
k

Wk+1 = Wk + ~ ~ 
(sLXL

_X
~
r
~
Wk) (4.115)

i-k-Ks-i

will also converge a.s. to for any finite positive integer K.

The above example shows the ease with which the assumptions of

Corollary 2 can be established for a rather large family of algorithms

V 

in the normal case. A straightforward extension of Example 1 to arbi—

trary rational spectral densities yields identical conclusions; i.e.,

if n(t) and/or s(t) in Example 1 are finite—order autoregressive 
V

moving average processes , the conclusions remain unchanged. Extensions

of Example 1 to the adaptive array processing of homogeneous random

fields is straightforward, but notationally somewhat cumbersome.

The application of Corollary 2 to the non—normal case is, in

general , more difficult than Example 1 suggests for the normal case.

Two possible approaches for the non—normal case are as follows:

(i) compute bounds on 
~~~~~ 

and P~ O~ L) either directly or

via (4.78) and (4.79) and apply Corollary 2 directly, or (ii) compute

bounds on the fourth cumulant functions K1(u),1c2(u), and c3(u),

4
-V ~~— —~ ~~~~~~~~~~~~~~~~~~~~~~ -~-
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— 
. 

apply (4.104) and then apply Corollary 2. Example 2 below consider.

: a rather special case of the former approach. An additional difficulty

V arises in the non—normal case in establishing that ~~~~~~~ is
V 

bounded.

EXAMPLE 2 
V

Let ~~~~~~~~ 
~~~ 

be independent, zero mean, finite variance,

wide—sense stationary stochastic processes. Assume that both

and 
~~k~k——= 

are N—dependent. Recall the definition of N—dependence

from Chapter III. Define X

k 

— 8k + n.
K~ 

and X.~ — (x
k
,xk.l~

...,xk_P+l).

Define Fk 
= ~~~~ and assume that E(j(F~ (~~), q>2, is bounded. Suppose

that it is desired to form a linear I*ISE estimate of based on the

data vector X.~. The desired estimate is easily shown to be — w’X.K~

where w is the (assumed unique) solution to RxxW — P, R
~ 

— E{X.Kc),

and P — E{s
kX.K

}. It is easily seen that ii p F
(k ,k+u)iI =

~~~~~~~~~~~~~ — R2 11 — 0 for all u > N
1 

for some M
1 

> M.

V Similarly , p~~ (k ,k+u) , and ~~(k~kl-u) are easily shown to be zero

for all lul > N2 (for some N
2 

> M) for either — 

~~~ 
or

— P — E{s
k~~
}. Letting 

~
‘k 

— k 1
, all of the assumptions of

Corollary 2 have been established . It is not difficult to show that

algorithms such as (4.114) and (4.115) will also converge a.s. to w .  V

A slight generalization of the result summarized by (4.104) and

(4.105) seems to be useful for algorithms having the form of (3.1) with

k
1’k — V I sgXt (4.116)

‘k

_______________________ - V
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and

— J- ~~ 
X~X~ , (4.117)

k L_k
~
KK+l

where K.K is a positive integer—valued function of k. Clearly,

E{Pk} — P and E{F
k
} — R , so that (4.6) and (4.7) are satisfied. In

case Kk 
— 1, (4.116) and (4.117) reduce to (4.83) and (4.84), respec-

tively. Denoting the right—hand side of (4.104) by h(u), (4.104)

can be restated for the case at hand as

max (p~ (k ,k+u) , IP c0t ,~~h 1) I )  5. ~~~~ I ~~ h(n — m) (4.118)

(4.118)

where Uk ~~~~~~~~~ 
and the sums are over the index values

k - K
k 

+1 $ m I k and k + u - + 1 < n I k + u. The techniques

used in Lemma 7 can be applied to the double sum appearing in (4.118)

to obtain u+lc,~—l

Uk I I  h(n—in) — U
k U I h(v) 8 k U V 

(4.119)
m n ‘ v—u—K~~~+l 

‘

where 8k,u,v 
— min(o,u-v) - max(

~
K.K. 

u_v_L
~s-~
). In case K

k 
— K

(a constant), then

a~ I ) h(n—in) —-4 
~~ 

h(v)(K — t v—ui) . (4.120)
a n K v—u—K+l

Another special case of interest is K.K k; then

win u ,o)
Uk u  I I  h(n—m) — k(k+u) h(v)(k+v) + h(v)

a n v—I-k v—i

0 u+k-1
+ I h(v) + k’k+u) h(v)(u—v+k),

v u+l max (u+l ,l)
(4.121)

b
where, by convention, I — 0 if b c a.

a

4 
__________  ___________________ _________  _ _ _ _ _  -V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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The result (4.i2l) can indeed be used to examine the convergence

properties of algorithms having the form of (3.1) with

— — I s~X , (4.122)k k t_1 £

k and
V 

F
k 

— I xix; - (4.123)
i—i

This resulting algorithm seems to be of interest for several reasons

and is treated from an alternative viewpoint in detail in the

following section.

C. A Simple a.s. Convergence Result

In this section, a simple a.s. convergence result is established

which does not require all of the machinery developed in Section IV—A.

The result is of interest because of its simplicity and the inf or—

mation provided on the convergence rate for algorithms satisfying

the rather restrictive assumptions made in the theorem stated below.

THEOREM. Let be given by (3.1) with = w1 arbi trary . V

V Suppose that there exists sequences {a~}~~1 and {b~}~~1 of ~~~~~~ V

V nega tive nwnbera (possibl y randaii)  satisfy ing

IIF~ 
— 

a .p . a~ ( 4.124)

and 
IIF~WO 

— 
a~s. ~~~~~ (4.125)

Pur ther~~re, supp ose tha t there exists a positive integer no (possibly

ran d~n) such that for all n > n
0
, 0 a?~s. Iin (X min - a~) 

(Z~8• 
~3 where

— in~~~r~ 
Then for all ~ ~ no,

-

‘

‘

V 

__ ___ _________ 

__ 

_______ 
‘V
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~~~~~~~~~~~~~~~~~~~~~~~~~~

ll v~s-~ H a~a. ~ ~~~~ (1 -

4- max (b k/dk)~
(l — Ti (1 — u 45

)) , (4.126)
n~~k<n 

a

where dk 
= A - a~. Fur hermore, if IM kdk 

a.s. 
~, and bk~c

1 a4~s. 0

as k + C D, then a4s. 0 as n 4 C D .

PROOF. From (4.2) through (4.7),

V — V  —~~~( F V  + F w  — P )n+l n n n n  n o  ~

= V — ~i R V — 
~i (F V + F v — P - R V ), (4.127)n n u n  n n n  n o  n x x n

so that for all n > n ,
— 0

(N +1l( 1 (1 — UnAmin)IIVnU + U~IIF~ 
— R u  il~~iI V

+ p ((F w — 
a~.s. (1 i~~d )  lI’1~Il + u b .  (4.128,

Iterating (4.128), for all n > n0, 
V

~ IIv~ ~~ 
11 (1 — )J

k
d
k
) + ii (1 — ~i d )1i

k
d
k

(b d 1). 
V

o k—n kn  J k+l ~

V 
° ° (4.129)

Since all terms appearing in the sum in (4.129) are a.s. non—negative, —

(4.126) follows immediately from (4.129) with the aid of Lemna 3. Fur—

thermore, if 
~~k~

Ik 
a~s. — and bkd

’ a4s. 0 as k + co, (4.129) and

Lemma 4 show that IIV II 
a4s. 0 as n + °°• Q.E.D.

In order for the above theorem to provide useful information V

regarding convergence rate, the sequences (a~} and (d} and the
V 

integer 
% ~~~~ be known. As mentioned in the previous section, one -

V

application of the above theorem is to algorithms having the form o~

_______________ _______

_________ 
~~~~~~~~~~~~~~~~~
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(3.1) with and F
k 

given by (4.122) and (4.123), respectively.

For thiq case, the results of Serf ling ([583,159]) presented in Section

IV—A as Lemma 5 can be applied to establish (4.124) and (4.125). It

seems that such algorithms should converge with the fastest convergence

rate of any stochastic approximation algorithms under consideration,

since F + R and P + P. It seems likely that the above theoremn xx k 
V

can be used to choose to maximize the convergence rate for such V

algorithms. An important special case of the above theorem is the

(deterministic) steepest descent algorithm.

D. Discussion

In this chapter, new a.s. convergence results are developed,

applied, and discussed. In Section IV—A , the main results of this

work are developed and the extreme ease with which these results

can be applied at least in the normal case is illustrated in

Section IV—B. Indeed, it is shown that algorithms (4.112) and V

(4.113) converge a.s. to w in the normal case if X
k~ 

5k are

samples of finite variance finite order autoregressive moving average

processes, a case of great practical interest. Although these results

seem to be the strongest convergence results yet obtained under the

weakest conditions, there are several open issues remaining. In practice,

convergence rate is an extremely important issue. This problem is

treated in Section IV—C under overly restrictive conditions. The asymp-

totic distribution of V seems to be a topic of considerable theoreticaln

interest. Truncated algorithms such as (3.41) as well as algorithms

using a random “gain sequence” also seem to be of interest. Practically,

V 

- 

the most important issue is probably an analytical investigation of con—

V 

vergence properties in nonstationary environments.

- ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ V •V~~~~~VVV
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V. SPECIAL FORMS OF DATA CORRELATION MATRICES
V 

In Chapters II through IV, the stochastic solution of the linear

equation

V R w  — p , (5.1)

where 
~~ 

is a p x p correlation matrix and P is a p x 1 correlation

vector is considered. In case 
~~ 

and P are known, the required

solution, w , of (5.1) can be obtained directly. This chapter is de—

voted to computationally efficient techniques for solving (5.1) when

R is either a Toeplitz matrix, i.e., the ijth element of R is axx xx

function only of i—j, or a “block” Toeplitz matrix, i.e., for p — ML,

there are M2 L x L submatrices of Ru arranged in a Toeplitz form.

The results of this chapter are computational algorithms which require

V far less computer storage and computation time than standard numerical

techniques for solving (5.1).

A. Motivation: Array Processing of Homqgeneous Fields

An important application of linear filtering theory is to the

estimation of some component of a scalar—valued homogeneous random field.

Let ~~ (t, x ,y ,z ,) be a scalar homogeneous random field for n = 1,2,...,

N. Let t denote time and (x,y,z) denote spatial coordinates in some

suitable cartesian coordinate system. Furthermore, assume that the

~~~(.,. .,.) are zero mean and uncorrelated, i.e., that

E{ç~(t1~x1,y11z1)i~ (t2~
x2,Y2.z2

) 0 for all n m and for all t1,t2,

where the — denotes complex conjugate. Then with 
V

— (t
2
—t
1
,x
2
—x
1

,y
2—y1,

z
2
—5
1
) and

V 
V N

x(t,x,y,z) — I ~~~~~~~~~~ , (5.2) 
V

n 1
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the autocorrelation function for x is given by

= 

n~i ~~~~~~~~~~ 
, (5.3)

where ~~~~~~~~~~~~~~ = E{X (t1,x1
,y
1,z1)X(t2

,x2,y2,Z2)}, and

— E{~~(t1,x1,y1,z1)~~(t 21x2,y2,z2)). From (5.3),

x(t,x ,y,z) is a scalar homogeneous random field.

Suppose that there are L sensors located at coordinates 
V

— (x
t

,y t ,zt)(l<&<L) and that following the output of each sensor is

a tapped delay line having M equally spaced taps. Assume that all L

delay lines are identical and have a time delay of D between adjacent

taps . Define the p—element “data vector” (p—ML) by

V X ’(t)  — (x(t ,p1), x(t,p2)I...,x(t,pL)I
X ( t D ,p

1
), x(t_D)p2),...,x(

t_D ,p~) ,

V 

X ( t (M 1)D ,p
1
), x(t_ (M_l)D,p2

),...,x(t_(M_l)D.pt
). - -

(5.4)

Note the data is ordered so the first 
~L 

elements correspond to data

observed at the input to the array at time t, the second elements

correspond to data observed at the input to the array at time t—D, and

so on.

Suppose that it is desired to form a linear MMSE estimate of

8(t) — F 1(t—d , 
~~

at time t — kT, k — 0,1,..., based on the data vector X,~ — X(t)t t.kT.

It is noted that need -mt correspond to one of the physical sensor

locations and that d need not be an integer multiple of T. It is

assumed that D is an integer multiple of T. Denoting s(t)I t_kT

V~~~~ V_ ~~~ V V V ~_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~ 
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by 8
k’ 

it is easily shown that the desired estimate is given by

— w’X.,, where w is the (assumed unique) solution of R w —
k o~~ o xx

R
u 

E {X.
~
X’
k

}, and P — W{s
k
i.
~
). In order to examine the special forms

of R that can arise in this application, it is convenient to note

that for m = 1,2,..., ML(—p), the m
th element of X(t) is given by

(X(t ))  — X( t — q~D, ~m 
— q~L) , (5.6)

V where = [~~-~9, and [.1  denotes the largest integer part. Then the

element of 
~~~ 

is given by
V 

( R ) ~~~ — E{x(kT — ci~
)
~Pi_q1L )x

~~
T —

— — 
~j)D~PJ..q L 

— P i q j
i) (5.7)

Similarly, the m
th element of P is given by

— (E{s~X~)) {~1
(kT_d iPr)x(kT cL.~D~Pm..q~L

)}

— Pl(~~
imI)P I~m_%L~~r

)
~ 

(5.8)

where the last equality follows from (5.2) and the uncorrelated V

assumption.

Now, some interpretations of the are in order. Suppose

that 
~2’ e.g., correSponds to 

“sensor noise” which is uncorrelated from

sensor to sensor. Then

p
2

((q
j 

— q~ )D, 
~j—q~L 

— 

~i-q~L~ 
— p

2((q~ ~~~~~~~~~~~~~~~~~~~ 

V

(5.9)

where S.,. is the Kronecker delta. Suppose further that the remaining

‘ are propagating plane waves. Then

— ~~)D~PJ_Q
1
~ — Pi_q

jL
) 

V

— ~~~~~ — — 
~n~

’j—q~L 
— 

“i—q 1
L~’

0
~ 

(5.10)

V 
~~~~~~~Vç A
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V for nc{l,3,4,...,N}, where -r
~
(Pt — ) is the propagation time

1 2

from sensor t~ to sensor £
2 for 

~n’ 
which is clearly a function of

the propagation velocity, the direction cosines of the propagation di—

rection, and the distance between sensors. From (5.7), (5.3), (5.9),

and (5.10),

(Rxx)ij — 

~~~~~ 
~0

((q
~ 

- q~)D - 
~n~~j—q~L 

— Pi_qjL
)
~ 

0)

n~2

+ 
~~~~~ 

— q )D, 0)6 L i L 
(5.11)

j i jq~~’ q
~

From (5.11), it is easily seen that the ~~~~ element of Rxx is a

function of only — q1
, j — q~L, and i — q~L. Hence for any i,j c{l, V

2,...,ML} , and any integer u such that i+uLc{1,2,...,ML} and j+uLc{1,

2,...14L), (R
u
)i.~~Lj~~L 

— (R
~~
)jj. That is, R,~ can be expressed as

a0 
a1 

a2 ...
a 1 U a1— 

, (5.12)

U1M ... a
1 

a
0

where each ~.s an L x L matrix. In other words, 
~~ 

Ia a “block” V

Toeplitz matrix consisting of N2 L x L submatrices arranged in a

Toepiitz form. An immediate consequence of (5.12) is that at most

(2).! — 1)L 2 of the (ML)2 elements of Rxx are distinct. Furthermore,

since Ru is Rermitian, at most (M — l)L2 + (L + l)L/2 elements of

R need be computed.xx 
- 

V

In obtaining (5.12), no special array geometry is assumed. It is

not difficult to see from (5.11) that in case the array geometry is such

that 
~~~~ — L 

— 

~~~~~~~ L 
iS constant for all i,j such thatj q j  q1

V 
~V~V VVV VV V._

~V.:
_VV__ V_V_
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(j — q
1

L )  — (I — q1L) is constant, then each of the a
~ 

in (5.12) is

a Toeplitz matrix. In this case, at most (214 — l)(2L — 1) elements of
R are distinct. Since Ru is Hermitian, only (M — 1)(2L — I) + L

elements of Ru need be computed.

Finally, in case L — 1, (5.12) implies that 
~~~ 

is a Toeplitz

matrix having at most 2M — 1 distinct elements. Since Ru is Her—

mitian, only 14 elements of 
~~ 

need be computed. The case L — 1

reduces tje filtering problem to the filtering of wide—sense stationary

processes with an FIR (for Finite Impulse Response; really, finite dura-

tion unit pulse response) filter, the Toeplitz nature of which has been

exploited in [63]. 
-

B. Toeplitz R

In case Ru is a Toeplitz matrix, several efficient algorithms

are available for either the solution of (5.1) or the computation of

R~~. Levinson [64] was apparently the first to develop an efficient

V algorithm for the solution of (5.1) in case Ru is a symmetric Toeplitz

matrix. Siddiqui [65] presented a simplified solution for R~~ for the

more specialized case that R is a covariance matrix for a stablexx
wide—sense stationary scalar discrete time autoregressive process of

order k. Trench [66] obtained an algorithm for finding RX~ 
requiring

only that R be Toeplitz and strongly nonsingular. Zohar [671

presented a much simplified derivation for the result of Trench (66].

Preis [68] explicitly presented the algorithm of Trench for the case

that Rxx is symmetric and discussed its occurrence in antenna problems.

A Fortran routine based on (68] is presented in [63]. 
V

Zohar (69] makes use of the algorithm of Trench to solve a set of

Toeplitz linear equations. Markel and Gray (70] obtain a similar result

-—  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ____ _______________
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from a different viewpoint. Farden [71] makes use of the techniques

used by Zohar [69] to derive a more efficient algorithm in case R
u 

is

Herm1~ian Toeplitz and P is a “Hermitian vector.” A more general

version of this latter result is presented below, which provides efficient

algorithms for the solution to (5.1) in case R
~~ 

is a Toeplitz matrix.

Since the techniques used in this section are inherently related to

those used by Zohar (69], an attempt will be made to follow the same 
V

notational conventions. Greek letters are used for scalars, capital

letters for square matrices, and lover—case letters for column matrices. 
V

Subscripts used on matrices will denote the number of elements in one

column of the matrix.

With a slight breach of previous notation, define R — R
~~
, w — w,

and d — P in (5.1). The algorithms developed here make use of

Phase 1 of the Trench algorithm [67] which requires that R~ be strongly

nonsingular, i.e., that all principal minors of R~ be nonzero.

Consequently, f t  will be assumed that (5.1) has been normalized so that

R has ones along its main diagonal. It is noted that any nonsingular

covariance matrix of interest in the present work is both Herinitian and

strongly nonsingular (positive definite implies strongly nonsingular);

however, since the results are of more general interest, it will be

assumed for nov only that R is Toeplitz and strongly nonsingular.

Consider the system of equations R~w~ — ~~ where R~ is a p x p

Toeplitz matrix normalized such that (R
~
)ji — 1, for i = l,2,...,p.

Define the sequences 
~~~ 

and {y
~} such that d’ 

~~~~~~~~~~~~~~~~~
2

y
~~~) for p odd and d — (~ ,...,~1,Y1,. . .,Y

2
) for p even. For

2 2 2
p even or odd, d

~+2 — (n ~~~ , d~ , Y ) for i — 0,1,2,. ..,p—2, 
V

V.~~~~~~~
V ViV~~~~~~~~~~~~

V
V V
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where [.] denotes the largest integer part, d0 $, and d
1 v1

.

The Toeplitz nature of R~ enables one to write (0~i~p—2)

1. a~~1 
Rj+i ~~~~~

— 

b R 
— 

~~~
‘ 1 

‘ 
(5.13)

i+l i+1 i+1

where the denotes the reversed ordering of the elements, e.g.,

— (Bj+1~
...

~
B1
). Clearly, (5.13) may be rewritten as

1

a
Rj+2 — 

1+1 (5.14)

1 ‘

V

Defining R1+2w1+2 d
1~2 

(l<i~p—2), it follows that

10 0
1 

V

V 

- 
R
i+2 

w
1~2 

— v~ — O~ , (5.15)

where — 

~ 

— ~~~~ •~ +3 — 6~w1~ 
and O

~ 
is an i x 1

1column matrix of zei~o~i. Defining Bj+2 R +2, (5.15) yields

0 ei
= v~ + Bi÷2 0~ . (5.16)

0 V

From [67], 
~i+2 

may be expressed in the form

1 e~~1 1 
N
i+i 

e
1~1

~j+2 
— A +1 14 

— ~~~~ 
~~~ 1 

(5.17)

i+l

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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It is not difficult to see from (5.17) that Bj+2 may be expressed as

... (e~~1) j

1+1

B
i+2 

— (5.18)

(~1~1
)~

1

Substituting (5.18) into (5.16) yields

— + 0 + +~0~ 

[

~
i÷i]} 

. (5.19) 

V

In order to make use of this result, Phase 1 of the Trench algorithm

(67] can be applied:

Initial values: e
1 

—a1, g
1 

= —b1, A 1 1 — a1b1

Recursion of A ,g,e (l<i~p—2):

= _ (aj+1)j+1 
— e~ ~~

, ø~ — _ (bi+1)j+i 
— b~ ~~ 

,

r -L.l r -l 1e1 + 6~~~f g1 I w1X1
ej+1 = 

‘ 
~~~~ 

— i
L 6

i~~~~~ J ~ 
+ w~A~~e1J

—1
A
1+i 

X
1 

—

V 
Finally , Phase 1 of the Trench algorithm and (5.19) may be combined V

by noting that

V W
i 

= Vi. 
(5.20)

and r~1 — a1y1] V

(1 — a1b1) 
1 

. (5.21)

L~1 
— b1n1j

V 
~~~~~~~~~~~ 

~~~~~~ V V V V ~~~ V. ~~~~~V 

~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~ 
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Note that efficient u~e of the above result requires that 6~ , w1
, e1~1,

V 

and A1~~ 
be computed for all I — l,2,...,p—2; whereas,

V 

- 

given by (5.19), e1 — n — ~~~~ and — ~~ i+3 — b~v1 need only

• be computed for i — l,3,5,...,p—2 if p is odd and for i — 2 ,4,...,

p—2 if p is even. Several important specializations of the above

result in case R is Ilermitian.

If R is a Hermitian Toeplitz matrix then bj+, —

— e1~l, and for all i — 0,1, ... ,p—2. Consequently,

the above result simplifies . The simplification is summarized below.

PROBLEM FORMULATION: R~v~ — ~~ (o~iur~—2 )

i+1 V

R -
V 1+2 —

ai+l R1+1

d~~2 
— 
~~~~~~ d~, y~~~~ ), ~ =

V 

Initial values: e1 
— —a1, A 1 — 1 — Ia1I 2,

1 —

— a~n~

Recursive relations: Compute 6~ , e~~~, and A 1~1 for i —

Compute O~~, $~~, and v~4~ for I l,3,5,...,p—2 if p is odd and

for 1 — 2,4,6,...,p—2 if p is even.

Si 
— — (a 1+,) j+1 — e~ ~~

I

ri + ~~~~ ~jei+l — I  —1[ 61
A 1

jV 

_______ 

_____ _______________________________ _____________________

V

__ —— - T
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2—1 V

X
i~1 

— A~ — 

~i
I 11

0 — -a ’ vi ‘ i+31 i i
(

2 J

~~ — Y‘i i+3 i i
2

- + A
~~1 

e
~ f[~] + ~~~~~ [~i+l]I . 

-The above results o er no apparent computational advantage (or disad

vantage) over the results of Zohar [69]. However, the following results

do offer significant computational savings over the results of Zohar [69].

Suppose R~ Is a Hermitian Toeplitz matrix and the elements

of d satisfy a Henuitian symmetry property, i.e., d~ — ~~~~~~~

Then dj+2 (n ~~ , d~, ~~~~ ) (o<i~p—2), i.e., -
~~~~ 

—

— + 
V

Consequently, v1~2 = and ~1’~91. Hence, only ~~~~~~~~~~~ elements

V of v
1~2 

need to be computed using the recursive relationship given V

above, the remaining elements being obtained from the relationship

= 

~~+2 
Making use of these fac ts, the above algorithm for R~

Hermitian and ~~ 
= ä requires approximately l.5p

2 
additions and

i.5p
2 
multiplications to compute the desired solution, w .  This com-

pares with 2p2 for the case that R is Herinitian and d~ arbitrary.

In case R , d (and hence v) are real, R~ is symmetric, and

a — ~~ an even further reduction in computational requirements

results. For this case the recursion for w1 
becomes

— :~ + A;~1 0~~ [{i 1 + F’~’11 ~ 
(5.22)
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and the computation of a~ V1 in the expression for O~ may be

computed as 
V

1/2

V 

a~ w1 
— 

~ 
(w1)~((a1)~ + (ai)1+i_~) (5.23)

t—l

for i even and

i—i V

2

V 

a v~ — 
~ 

(vi)&((ai)* 
+ (aj)j+,_~

) + (wi)i+,(ai)j+, (5.24)

~~1~~

for i odd. Making use of these expressions, this specialized

V algorithm requires approximately l.5p2 additions and l.25p
2 
multiplica— ’

V 

tions. A slightly different form of (5.22) can be easily obtained as

0 0
Vi+2 - + 

A
1 

ç 

[e
i + &

i] 
(5 25)

This final expression (5.25) is slightly more efficient than (5.22). A

Fortran routine for this specialized algorithm making use of (5.23) —

V (5.25) is presented in [723 .

C. R Having L x L Submatrices Arranged in Toeplitz Form

In this section, the solution of (5.1) for the general

V situation with Ru expressed by (5.12) is given. An important by—
V 

product of this development will be an efficient algorithm for computing

R~~. Again, all covaciance matrices of interest are Hermitian; however,

since the results seem to be of more widespread interest, the Hermitian

restriction will not be made. As assumed in (5.12), let p — ML.

Throughout this section, capital letters will be used to denote square

V matrices and lower case letters will be used to denote “vectors” with

V 

LxL matrix “elements.” Subscripts on these quantities will be used to

V 

_ _

~~~~~~~~~~~~~~~~~~~~~

VVVV

~~

V V
VV

V V V V V~~~~~~~VV~~~~~~~~~~~~~~~~~~~~ V~~~~V V V V  - _ _ _

~~~~~~~~~~ VVV _ ~~~~ VV — — VV ~V~VV~ VV _V ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _____________________________________
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denote the number of elements in each column of the matrix. Greek

letters will be used to denote L x I. matrices. These conventions will

be violated with R~ r~~ , w — w, and d — P as in the previous

section. The £ x £ identity matrix will be ñenoted by I~. An a x 1

matrix with all zero elements will be denoted by °a b~
From (5.12), Ru 

= R~ = can be expressed as

a(M l)L
I~V~~~~~ — , (5.26)

b(M_l)L R(M ,)L

where aØ (l)L (a1,a2
,.,.,~z141), b~~M.. l)L

1u (a
1
,u

2
,~~~~~ V . , ri114) ,  and the

“ is used to denote an obvious matrix operation similar to matrix trans-

pose. Define — R~~ for m — l,2,...,M. Express B(m,l)L as

8 B e ’in mmL
B (5 27)(m+1)L f 8  Amtm aL

Then ‘(m+l)L — B
(~~l)LR(~~l)L yield-s - - ,

I 0 +° ‘b n a” +° e’R 
V

-‘ L L,mL ~in
C
~o “m%L mL ‘‘in aL “m ml. mL

0 I f B c t  + A b f B a ” + A  R V

L mL ml. in o ml. ml. ml. in mL mL ml.

(5.28)

Solving (5.28) to obtdn AmL — Bmt + f
~L

B
~
e
~L~ 

and substituting into

(5.27) yields

8 B e ’in m m L
B — . (5.29)(m+l)L f B B +f B e ’mLm mL mL m inL 

V

Define the “block exchange matrix” E~~ by

- ~~~~~~~ VV VV ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ _______
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I
o

t 
. (5.30)

0

Note that ~* E* I and that the block Toeplitz nature ofinL mL mL

given by (5.26) enables one to easily verify that EI~L
R
~LE*L 

— R L.

Then, by defining B*L 
— (R

~L
)’1, it follows that — R

~LB*L

— R (E* B* E* ). Hence, B — E* B* E* and B* — E* B E* . ItmL ml. mL mL mL inL ml. ml. niL mL niL niL

will be convenient to use the symbol ~ to denote a reversal in the V

ordering of the L x L “elements,” e.g., 1mL — 

~
‘m’%—l’’””l~ ~ i~i~mi)

”

— amLErnL~ Expressing B1~~~~1) L 
as V

~m~inLB
~~
+l)L 

— 

D 
(5.31) H

mL~
’m niL

and noting that tinL 
= B*LR L yields

°L,mL + Ym~ ;L
amL Ym

b’
~~L 

+ Ym L R
~L

°inL ,L I~~ 

= 

h 1y + D
~L
a
~L 

h
L~
r b L 

+ D
~~
R L

(5.32)

Solving (5.32) for D~~ — B*L + ~mL
Vm~~L 

and substituting into (5.31)

yields V

v
iii ~

‘m~mL
— 

A (5.33)
h ~~‘ B* +h 

~~~~~~~~~~mLm mL m Lm in L

Pre— and post-multiplying (5.33) by E
~~+l)L and combining the result V

with (5.29), one obtains (since 
~~ ~rnL 

E
~t 

— BmL)

-; V
—V - ~V - — V±V VVVV-VV~~~~~~VVV , ___ _~~ •~V-VVLV-V V-~~~VV_V ~ VVV ~~~~V~~~~VV LV ,,_~

_
~
g_ ~~~~~~~~~~ •~,
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R e’
m m  m m L

B(m+l)L 
‘ f ‘~ B +f o ‘mL”m mL J~~e1,~ V

rB + h  “ h 
V

niL mL ’m%L mL ’ni~

I g” I (5.34)

L~
m nu. ‘Yin j

Using techniques analogous to those used by Zohar [67], it can be

shown that all of the elements of B
(~~,)L 

can be generated from

V e
~L~ ~~L’ 

‘Yin~ 
g ,  and hmL. Denote the ~~th L x L “block” of a matrix,

say AmL, by (AmL)ij. From the first equality in (5.34), it follows

directly that

— Bin ’ (5.35)

(B
(~~~l)L )

i+l l 
= 

~~~~~~~~~~~~~~ 
l
~.i1m, (5.36) 

V

(B(~~.l)L
)1 i+l 

— B
~
(e
~L
)li, 1ci<m , (5 37)

and
V (B (~~l)L

) j+l J+l — (B
L
)
ij 

+ (f
~L

B
~
e
~L
)
1J ~ 

l<i,J<m. (5.38)

From the second equality in (5.34) , it follows that

(B(~~l)L)i,j 
— (B~~)1~~ + ~~~~~~~~~~~~ 1<i,j<m . (5.39)

Combining (5.38) and (5.39) to eliminate

(B (~~ l)L ) i+l j+l ~
6 (m$l)L~f j  + ~~mL8m~~L

)
i,j

— 
~~~~~~~~~~~~ lci,j’qn. (5.40) V

Equation (5.40) is a recursive relationship for generating the elements —

of 
~(~~l)L 

starting with the initial conditions given by (5.35) — (5.37).

It is important to note that it is the property that E L B~L 
E~~ — 0mL

that enabled the derivation of (5.40). 
V

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - --- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VVVV ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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V 
In order f or the above result to be of practical use, recursive

relationships for B~ , eEL, ~~~ ;‘ 
g 1,, and h~~ must be developed.

Solving the upper right equation of (5.32) yields 
~
“
L 

— —b”~ B*L 
or

- 

V 

— b1fl~ ~~~ 
. (5.41)

Solving the lower left equation of (5.32), and substituting D t
- B

~t 
+ 
~~~~~~~ 

yields 1’mL’Ym% 
.
~B*t 

a
~~ 

- 
~~~~~~~~~~~ Solving the

upper left equation of (5.32) for ~~~~~~~ and substituting yields

h ~~_B* a ormL mL mL

— —B~~ a L . (5.42)

The upper right equation of (5.28) is easily solved for

e’ — —a” B
ml. mL mL

Solving the lower left of (5.28) for f
L

B a  and substituting

A — B  + f B e ’ and B e ’b — I  — B a  yieldsml. ml. ml. m niL in ml. ml. L in 0

V f — — B  b . (5.44)niL mL mL

Equations ( 5 . 4 1 )  — (5.44) can now be used with (5.34) to derive recur-

sive relationships for g~~, h t
, e~~, and From (5.41) and the

first equality in (5.34),

B e ’
i n  m int

—(a 
~~
“ ) I (5 45)— (m+l)’ mL f R B + f ~ e

’
mL m ml. mL m mL

or 
~ (m+l)L — 

~°L,L’ ~~~ — e
~
8
~

(I
t
, e’

L
) ,  where

— a_ (~+l) + b
luL ~~~ 

(5.46)

Prom (5.42) and the first equality in (5.~ 4),

t
~~~: ±, 

- - 

~~~~~ V VZ ~~~~~~ 

V I1.V V~~~,LV VV-V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VVVV- -VVVV~~V LV V
~~~~~~~ ~~~~~~~~~~~~~~ -— V V



V 
V 

V~~~~~~~~~~ 

V~~ V : V VV V VVVV_VV V V V V V ~~V~~~~VV~V~~V V V ___________ V V~~~~~~~~~~~~~ V~~~~~~~~~~
_ VV -~~~

V 

91

[o~,,:I r’tlh(~~ l)L — I — I ~ I 
8m’5ni 

(5.47) 
V

L~~J 
LmI~Jwhere V

&m %+l + e inL amL . (5 .48)

From (5.43) and the second equality in (5.34),

e(W4l)L 
(e ’~~, °L,L~ 

— 
~~~~~~~~~~~~~~~~~~~~ ‘L~ 

(5.49)

where
- = a,~~1 

+ a
L 
hmL 

(5.50)

Also, from (5.44) and the second equality in (5.34),

If 1 I h iniL niL

~(~+l)L 
~~~ 

— 

I ~~~~ 
(5.51)

LL,LJ L U

where
(A) = a (~+l) 

+ 
~mL 

b
L 

. (5.52)

Finally, equating the four L x L “corner blocks” of (5.34), and using

V (5.45) — (5.52), B
~ 

can be expressed as

~~~~~~~~~ 
+~~ ~ B , (5.53)

in m—l m—l ni—l in m—l n—i
or 

8m%—l’Ym—l 
= Bm_l&m_l’Ym - (5 .54)

Substituting (5.54) into (5.53) and solving for B yields

= Bm_1CEL %_l1~_l
c
~_i

B
~_l
)

Furthermore, ‘Ym can be expr essed as

‘Yin — ‘Ym—l”L 
+(~

) . (5.56)

Now, consider the equation R w — d , for in = 1,2,. ..,M.mL mL m l .
Recall that w~~ and d

t 
are mL x 1 matrices. Define the L x 1

I

V -V VVV_VVVVL-V••A _ VV_ _ VVV____ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V_V ~~~~~L _ V  VVVVLVVVVVV VVVVV~~~ VV 
V

VVV ~~ LV_V~~~
VV _ -— _VV V. V_VVVV,V ,

V
~~~~~~~~~~

VV 
V~__V VV -LV
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matrix A by (A
m)j 

— (d i)( l)L+i ~~ • l 2 ,...,L. Recall that

the block Toeplitz nature of R,,~ enables one to write

r II 
~a a L I I ~~L 

a,,,~j
R — I  I — I  I .  (5.57)
(m+l)L 1b R I Ia” a

LmL mU Lm L oJ

Using the last expression for R
(~~1)L in (5.57) it is easily shown

that

I NmL 1•1 f°mL,1 1
R
(m+1)L 

t(
m÷l

~~ 

- 

[OL ljJ 

- 

— b
luL ~~
j 

. (5.58)

Def ining r — A~~1 
— b

L 
W

L 
and pranultiplying both sides of (5.58)

by B
(~~ l)L~

NinL 1 fOmL ll
W
(m+l)L 

= 1~ I + 
~(m+l)L 1 r

LL ,lJ Lu ’ J

Making u~e of the second equality in (5.34),

Iv 1 Ih iinL I I ntL I• I 0 I + y r  . (5.60)

L L ,1J L U

Once initial conditions are found, the development will be complete.

From (5.28) with in • l~ it follows that elL 
B °‘i%

1
’ ~1L —

and (a + ejLa_l)~~
. From (5.32), with m I~ 8lL —a_ 1a0

1 and

h
iL 

B 
_
~;
‘
~1
. With u’ 1, (5.34) yields y1 

+ f lL8lelL~ 
SO

that the set of initial conditions is complete. The complete algorithm

is sununarized below.

—- _ _ _ _ _
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PROBLEM FORMULATION: RMLWML 
-

lao a (H l)L 1
R

L~~M~lL  (M-l)LJ

aML (ct1,a2,.~~~,a ) ,  (l<m<M—l),

— (a
1
,a~~,.. .,cI~~

), (l<in<M—l),

VML

Initial values: ejL —a1~~~, ~lL = —c~~’a 1,

hiL —a
1
u1, 

~~~~. 
— + ~ j~ Ct_ i )

—1 , —l
+ fiT~ 1e IL ’ WIL — ~~

NiL 1 [h iLl
W2L I I + i 

1y 1r1.
L°L,1J .L lU

Recursive relations: (i<~ncM—2),

c •a + b ” I
in -(in-Fl ) mU mL’

~(m+l)L — (OL L ,g”mL
) —

6 — a  +e ’ a
in m+l mL mL’

l0L ,Ll f’L 1
— 

h I — I ~ I Bm6m~
m U  L mUJ

n~~~~ aIWfl + a L h L,

e(IWFi)L 
— (e’

L
, °L,L~ 

— 
~~~~~~~~ ‘L~’

____ 
_______

_ _ _ _ _ _ _ _ _ _ _  

—
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- a (~n-,4) + g~~ binU.

If 1 lb
im L  i m U

~(~+l)L — 

‘o I — I~ ~15~LL,LJ LL

—iB a ( L  — n y c ø )m+1 in L m i n m a

y~~I + w Ba U a a+1% m ’

— 

~m+2 - b .+1 L 
W(m+1)L •

lV(~~1)Ll P’(.+lLl
j+ 

[ j 

y~~1r~~1
L,l ¼

Note that if it is desir.d to co.put. the inverse of R~~, the above

algorit hm can be used with the .zpr.as ions for and

deleted . After ~~~~ (fl-.1)L. t Oi—l)L ’ 1(N—l)L’ ~‘Of-l) L’ a d  TM—I
have been computed , equations (5.35) — (5.37) and (5.40) with a — M — 1

can be used to generate 1~~ .

The above algorithm requires approximately 6M.L 2 + 2ML storage

locatiotia , which can represent a considerable savings for large M.

The algorithm requires approximately 4)(2 matrix (U x L) multiplica-

tions, 4M2 matrix (L x L) additions , and M matrix (L x L) inversions.

Considering that an L x U matrix multiplication requires approximately

scaiar additions and U3 scalar multiplications, and that standard

routines for an L x U matrix inversion require approximately L3 multi-

plications and additions , the above algorithm requires approximately

4M2L3 operations compared with approximately (1(L) 3 for standard

algorithms. These renarks , of course , do not include the operations

_ _ _  _ _ _ _ _ _ _ _ __ _  

_ _ _ _ _  ‘I- -t ~~~~~~~~~~~~~~~~~~~~~~~~~~ net. nw4., J-. ____________________________

-‘ —~ —L ~th~~~~~~ t _ ~~~~~ & ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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necessary to actually compute R~~ , which requires an additiona l

4M2L3 operations (approximately) . It can certainly be concluded that

the above algorithm can offer a substantial computational advantage

over standard algorithms for large M. Recall that M is the number of

taps on a delay line realization of a FIR filter.

As noted previously, all covariance matrices of interest in this

work are Hermitian (in fact, most are real and symmetric). Consequently,

the simplification of the above algorithm for Hermitian block Toeplitz

R will now be undertaken.xx
For the case that is Herntitian, it follows easily that

~
‘rn ~m ’ ~~ 

— 

~~ 
e~~~ 

~rnL’ and 
~
“
L 

— h’
L
. Substituting these

identities into (5.34) easily yields

B I Bm
frnL

(m+1)L If 8 B +1 Bf ’L m L m mU mL m mL

lB +h yh ’ h ylj m L  inL m mL m L m j
— I — I . (5.61)

[y h~~ yin J
Making the required substitutions into the general algorithm, the

simplified algorithm for the case at hand is easily obtained. A st~~ ary

of the algorithm for Herinitian R
~~ is presented below.

PROBLRM FORMULATION: R~~wML - d.~~,

[a~ 
b(M l)L1

PI (M—l )L (M—1)UJ

b
~L 

— 
~ 

,a2, .. . .%), (lcm CM— 1),

— ~~~~~~~~~~~~~~~~~
-— —---- —~---- -- -~~ —-- — —---—— -- .—--—-- .—--- —- ------ — --—--- --~~ -~~~~.- ~ -~--- -- - -s
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Initial values : 1lL ~~~~~~ hlL — —a ’iz,

— (a
0 + 

jI
_
I ) l 

y1 
— a~~ + 

~1L~l1iL’ 
W
1L 

—

[W ILl [hiLl
W2L — 10 1 + I ~ I y1r1

LL ,lJ L 1 J

Recursive relations : (l-cni<M—2), j
6 a +f’ (g’ )“

OL ,L1 I’L 1 ~ 6(m+l)L h I I ~ J in
mU L mUJ

w a’ +i~’ b ,
in in-Fl mL mL

— 

1mL 
- 

h
U

(m+l)L o
L,L U

B - (I - 8 6  w )~~Bni+l U m m ’
~
’m a  in ’

— y ( I  + w B  i ’ )a-Fl in L m m + l m m

*
F —~~~ b”a-Fl a+2 (a+l)L”(m+l)L

lw (a-Ii)Ll fh (a-~l)L1
W

(.4.2)L l~ I + I~~a+lFis+l
L L ,1 J IL J

In case the inverse of is desired, the above algorithm can be

used with the expressions for and W (a-,.2)L deleted . After

~~~~~ ~(M—1)L ’ h~~_l)L. and y1(_1 have been computed, equations ~~~~~~~

(5.36) and (5.39) with in — N—i , e L — 

~~L’ and — 

~\~L can be



;~~~ - . — ~~~~~~~~~~~~~~~~ ~~~~‘- 
- -.--

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
—‘—--------

~
-- -- ---- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

9,

used to generate BML. Efficient use of this procedure of course

denands that the Hermitian property of BML be used . The above algo—

• rithm requires approximately half the computations required by the

previous algorithm.

Another interesting case for block Toeplitz matrices arises when

R~~ is persynsnetric, i.e., symmetric about the main cross diagonal.

Define the exchange matrix E
~ 

by

1 0 11
H —  

~~~~ I . (5.62)
L, 0 J

A persyimnetric matrix A satisfies 
~~~~~ 

— A .  It is easily shown that

a block Toeplitz matrix as given by (5.12) is persymmetric if and only

if is persymmetric for all Q. — 0,±l,... ,±(M—l). Hence, in case

at Is Toeplitz for all t — O,±1,...,±(M—l), L~ is persyninetric.

Also, it is easily shown that the inverse of a persymmetric matrix is

persymunetric. With L~ persymmetric and given by (5.26), B
(a-~l)L

can still be expressed as in (5.29) . Computing E(In-4.1)LB~Jn-,.1)L
E(m+1)L

from (5.29), B(lwfl)L may be expressed as

B(~~l)L 
- r:m ~ :m~~: f 8 e’ ]m U m  niL mL m mL

la + E e B’f’ E E e B’El
I mU niL mU m mU mU mL niL in Li

— I I . (5.63)
‘E B’f’ E E B’EL Uin mL mL LIU L

In fuli analogy to the development of (5.35) — (5.40),

(B ) 8 (5 64)(m+l)L l,1 in ’

(B(m+1)L)j+1 1 
— 

~ mL
)i,l8m~ 

l.5i~!n (5 65)

- 1  
_ _• - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — ‘ *  - , — - — - -

- 
- -. 

~~~~~~_ —- -.
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(B(ln-4.l)L)l i+1 8
~
(e,~L
)1i l~i~m (5.66)

(B (a-I.l)L)
i+l 3+1 

— 

~~(m+l)L ~i,j 
+ 

~~mL8m~~lI?i,f

— 
~~~~~~~~~~~~~~~~~ 

, l<i,jcm . (5.67)

Thus , in this case, all of the elements of BML can be generated from

BM l ~ 
e(fl.4)U. and ~(M—l)L 

Equations (5.43) and (5.44), which are

still valid for this case, can be used with (5.63) to obtain recursive

relationships for 
~~ 

e L, and As in the previous section , it

will be convenient to use the symbol to denote a reversal in the

vertical ordering of the rows of a matrix, e.g., — E La L~ 
and

a
~~
E
L 

— (ErnLarnL) ’ - 
~ IL From (5.43) and the second equality in (5.63) ,

e (IWF1)L — (e,~~, OL L
) — CmBrn (f

I~L
I EL

), (5.68)

where

— a~~1E~ + a L8 L . 
(5.69)

From (5.44) and the second equality in (5.63),

If 1 1*niL i i m L

~(m+l)L — 

~ j 

— B~•~ , (5.70)

L L,L L~L
where

- E~a (a-Fl) + ~rnL~’mL 
(5.71)

Solving the upper left U x U block of (5.63), and substituting (5.68) —

(5.71) , one obtains

8 8 + 8  C B’ ’ ’ B (5 72)a m—l rn— i rn—i rn”rn—l a—i

Similarly, from the lover left U x U block of (5.63) , one obtains

~~ ~~~~~
‘ifi~ R (5 73)

m—l’m—l in m7m—l tn—i

I 

•- -_ _  

___________________________ - - ~~~~~~~~~~~~~~~~~~~
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Substituting (5.72) into (5.71),

— 

~
‘L — Bm_i~m_~~~,_i rn_j ?

4Bin_i. (5.74)

Finally, in order to solve the equation R
~~
wML — dML, note that (5.57)

through (5.59) are still valid . Recall that (~~)~ —

for i — l,2,...,L, and r — — b”
L
w
L
. Making use of the second

equality of (5.63) and (5.59) , one easily obtains

Iw L 1 lémLi

I ] + [ j B~E~F~ . (5.75)
0U,l EL —

The following is a suninary of the algorithm for the solution of

L
~
wML — dML. for the special case that is a persyssnetric block

Toepiitz matrix.

PROBLEM FORMULATION : RMLWML — dML,

lao a(M_l)L1

~~~~~I b R I,W ML R
ML~

- L (M—l)L (M-l)UJ

a L — (a1,a2 ,..., a ) ,  lcrncM—l

b
~L 

— (cs 1,a 2 ,. .  . ,a )  , l<incM—l

-

Initial values : CjL — —u,cs0
1, 8~ 

— (a + elLa_i) ,

= —cs ’a_,~ WlL — a
~
1
dlU , F1 

— 

~2 
— a lWlL ‘

IW1U1 I8lLl
— 

[o I + I BiELFi .
L1J UJ

II-~ _ _ _ _ _  

-

~~~~~~~

•

~~~~

-• - -
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) . Recursive relations: (lcm<M—2)

r a E +a ” ê‘a m+1 U mL mL ’

— ‘ o ‘‘f’e(~4.l)L 
(einL~ L,L~ 

- C~ B~~ niL’ EL”

- E~a_~a-~i~ 
+ f ’

L
b
L

If 1 18
m i L l i r n L

— 
I I — I

(m+i)L 
~ 

I I 
8m m

L U ,lJ

8 (Irn-Fl L m m m i  in ’

— 

~m+2 — 1’(in+l) L’~(m+1)L

1W(~f.i)L lê(m+i)Ll
— I 

~ 
+ I H ~ 

8
~~l

E
L
r
~~l 

.

L L ,l IL J

If the inverse of is desired , the above algorithm can be used with

the expressions for and deleted. After 6M~l’ 
e(M l)L~ 

and

have been computed, equation (5.67) can be used with in M—l

to generate R~~ — B~~, using (5.64) — (5.66) as initial conditions.

The computational requirements of the above algorithm are virtually

identical with those of the previous algorithm for Ilermitian block

Toeplitz ~~~ The reason for this similarity is clear: a Herinitian

matrix has conjugate symmetry about the main diagonal, and a persynnnetric

matrix has symmetry about the main cross diagonal.

Finally , in case is a Hermitian, persymmetric block Toeplitz

matrix , the computational requirements of the above algorithm can be

approximately halved . The simplification is easily obtained by

_ 
•
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substituting a” — b’ , f e , and $ — C ’ into the abovetnt niL niL mL m a

algorithm. The resulting algorithm is summarized below.

PROBLEM FORMULATION : R..~vML 
- d.~~,

ra b ’I o (M—l)L

L’~ M—l L 
R (M l)L

b ’
L 

— 

~~~~ ~~~~ 
. . , )  , (l<mcM—l)

wML

Initial values: ej~ = —a
1
a~~, Bi ~ 

(a + elLal)

— a
3dlL ~ A

2 
- ajWIL ~

[wit 1 FelL]
— I + 6

~
E
L
r
l

L°t,iJ LEt j

Recursive relations: (l<m<M—2)

S5 — + b
L
8
L

— ‘ ‘ 0 ‘ — ~ ~~
‘ ~~~~ E ‘e(a-f,)L %e L, L,L’ •‘m’•’m ‘ mL’ U’

— — 8 C 8 ’C~ ) 18 ‘

*
— — b’ 

F l)L~
èJ (m+l)L ~

IV(m+l)Ll I8(m+l)Ll
= 10 j + LE .1 ~ +iELr~+,

• U,l U

• 
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D. Discussion

In this chapter, special forms of data correlation matrices which

can arise in discrete—time stochastic signal processing applications

have been considered. Computationally efficient algorithms have been

presented for the solution of R w — P as well as for obtaining R ’xx XX

for these special forms. These results , the development of which relies

heavily on generalizations of the results of Zohar [67], [69], are of

interest in their own right. The application of these results to

filter design problems for which R
~~ 

and P are known is straight-

forward.

In case R and/or P are unknown and a fixed (nonadaptive)

f liter is desired , the results of this chapter are still applicable.

The obvious approach is to use estimates of 
~~~ 

and/or P. An

alternative approach to the design of FIR f ilters, with the signal and

noise structure of Example 1 In Section IV—B, involves the utilization

of “approximate” spectral density functions, and has been treated by

Farden and Scharf [63]. ExtensIons of the concepts treated in [63 1

to the design of multidimensional FIR filters can be accomplished with

the aid of Section V—C .

The results of this chapter are also useful for performing

simulations of adaptive structures. In performing such simulations, it

is advantageous to generate data having known covariance functions in

order to evaluate the performance of the adaptive processor by computing,

e.g., IIWk — w J I  with W
k 

obtained from some form of (3.1) and w

the solution to R w  = P. The results of this chapter are ideally

suited for the computation of w
0 for several cases of practical

interest, as discussed in Section V—A . 

-• -  — ---
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Finally , the results of Section V—A suggest modifications of the

algorithms discussed in Chapter II which should result in an increased

convergence rate without a severe increase in storage requirements.

Consider the algor ithm

W
k 

+ -~ (P - X
k
Y
k
) , (5.76)

where = W
~
X
K~ 

and X
k 

is a p—element data vector as in Example 1

of Section IV—B. Under conditions established in Chapter IV,

W
k 
a4s. w as k -

~~ ~~ , and hence, 
~k 

a4s. Sk as in Example 1. In

order to implement algorithm (5.76), the only storage needed is for

Wk,P, Xk, ~k’ 
and 1/k , or 3p + 2 words. This small storage require-

ment (as well as the minimal computational requirement) is indeed a

practical advantage. In many applications, convergence rate is an

extremely important Issue. One would certainly expect an algorithm of

the form

W
k 

+ (P - K 1 
~~~~~~~~ Wk

) (5.77)

for any integer K > 1 to converge faster than (5.76). Note that in

order to implement (5.77), the p x p matrix

k
= 1(1 

~ X~X~ (5.78)
£—k-K+l

must be computed and stored. For large P, the storage requirement alone

can preclude the use of algorithms such as (5.77). For the case being

considered , 
~~~ 

is a Toeplitz matrix having only p distinct elements.

Consequently, one is led to consider algorithms of the form

-—- -~~~~~~~~~
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• • + ~(P — P{Wk
) , (5.79)

• where F~ Is an unbiased estimate of R and constrained to be

Toeplitz, e.g., consider F~ with the 11th element given by

—1 p— f ’—if
(F~)13 = (p — 3—if) 

~~~~~ 

(X
i(
)
t

(X.
~
)
t+Ij jI 

. (5.80)

The idea here is that the ij element of F~ Is the average of all

terms on the 11~3j th diagonal of ~~~~ Clearly, E{F~1 — Rxx and

F~ is Toeplitz. An obvious alternative to (5.79) with F~ given by

(5.80) is

Wk+l W
k 
+ ~(P — i(1 

£=k~_K+l
L
~~

c 
, (5.81)

with F~ given by (5.80). Algorithms (5.80) and (5.81) can be

• - implemented with virtually no increase in storage requirements over

(5.76). It seems reasonable to conclude that algorithms such as (5.80)

and (5.81) are viable alternatives to (5.77) In cases where storage

requirements are an important issue and algorithm (5.76) converges too

slowly to be of interest. Extensions of algorithms such as (5.80) and

(5 81) for block Toeplitz 
~~~ 

are Immediate. It Is obvious that

additional analytical work on the issue of convergence rate is necessary

to evaluate the above remarks. 
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VI. CONCLUSION

In this work, new almost sure convergence results for a special

form of the multidimensional Robbins—Monro stochastic approximation

procedure are given. The form treated has been motivated by adaptive

• signal processing applications. Several types of data correlation

matrices (e.g., Toeplitz and “block” Toeplitz) have been examined and

new coinputatlonally efficient procedures have been given for both the

inversion of a matrix having this special form and for solving a cor-

responding set of simultaneous linear equations. In this chapter, these

new results are summarized, and suggestions for future work are

presented .

A. Summary of New Results

The new convergence results of this work, presented in Chapter IV,

are applicable to any algorithm that may be cast into the form of

equation (3.1). It is shown in Chapter II that this particular form

Is applicable to many of the algorithms that have been proposed for

adaptive signal processing application. Although many proposed algo-

rithms make use of a constant gain sequence, i.e., — p , It is

pointed out in Section Ill—B that in order for these algorithms to be

asymptotically unbiased when used with correlated data, the condition

that U k ~‘ 0 is essential. The theorem which is stated and proved in

Section IV—A transforms the convergence problem from consideration of

the a.s. convergence of a stochastic difference equation to the a.s.

convergence of several stochastic sequences . Corollary 2 of S ction

IV—A provides sufficient conditions on the decay rates of the auto—

covariance functions of the sequences 
~~~ 

and (Ck} to

• 

- 
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establish the conditions of the theorem . In Section IV—B the results

of Corollary 2 are applied to several specific algorithms that have

been proposed for adaptive signal processing . In particular , in the

normal case with Fk — 

~~
Xk, 

~k — 8kXk or 1’k 
— ~‘ — E{s

k~~
}, and

U k — O(k~~) ,  Urn klJk > 0, and W
k 

given by (3.1), if 
~~~~ 

{X.K } are

jointly wide—sense stationary and all scalar correlation functions

‘~r(u) which can be computed for {S
j

}~ (X
3

} satisf y lini uui2 Iy (u) I <= ,

then IVk I a.~s• 0 as k + — . For example, If {S
j

) and {X
3) are

finite—order autoregressive moving average processes, or can be viewed

as samples of strictly bandliutited continuous time processes, then

V~j  
a4s 0 as k + . Fur thermore, even in the non—normal case, if

{Fk} and 
~~~ 

are M—dep endent and E(IIF~ I f~~), q>2, is bounded , then

lV k I a4s. 0 as k + for suitable

In Chapter V , special forms of data correlation matrices, R ,

that are shown to arise in discrete time signal processing applications

are examined. New computationally efficient procedures are developed

for both the computation of R,~ and the solution of Rxxw — P in

case ~~~ 
is Toeplitz or block ToeplItz. The new procedures can

result in a significant savings in storage requirements and computation

time over standard solution techniques. For example, when R~~ is an

ML x ML symmetric matrix having M2 t x t suhmatrices arranged in

Toeplitz form, the appropriate new procedure for the solution of

R~~
w — P requires approximately 2M2t3 operations compared with

approximately (ML)3/3 for standard algorithms.

B. Suggestions for Future Work

Although the new convergence results presented in Chapter IV for

algorithms of the form (3.1) seen to be the strongest convergence

‘ l 
_ _ _ _ _
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results yet obtained under the weakest conditions, there are several

important issues remaining. The results of Chapter IV apply to algo—

• rithms of the form of (3.1) with E{Fk} symmetric arid positive

definite. Extensions to nonsymmetric and positive definite

are straightforward in view of Theorem 6.1 of [57]. Algorithms for

which a.s. convergence was explicitly developed in Chapter IV can be

interpreted as stochastic gradient—following algorithms, such as pro-

posed by Widrow et al. [37], Griffiths [38], and Gersho [9]. Although

stochastic projected gradient algorithms such as proposed by tacoss [32]

and Frost [33] can be cast into the form of (3.1), E{Fk} is only posi-

tive senidefinite. It is the author’s opinion that the results of

Chapter IV can be easily extended to the analysis of these stochastic

projected gradient algorithms.

An extremely important issue that warrants serious analytical

treatment is the issue of convergence rate and the tradeoffs involved

between convergence rate and computational requirements. In this

regard , a treatment of truncated algorithms such as (3.41) , algorithms

which use a data—dependent gain sequence 
~~~~ 

and decision—directed

and decision feedback strategies would certainly seem to be of great

interest. Other areas that merit additional work include (i) the

effects of quantization errors on the convergence properties of these

algorithms, (ii) strategies for use in nonstationary environs, and

(iii) the asymptotic distribution of the “weight vector” for algorithms

used with correlated training data.

Finally, the new results obtained in this work have applications

to areas outside the realm of the adaptive signal processing schemes

discussed in Chapter II. For example, the algorithms proposed by

_______ 
_ _ _ _ _ _  
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San dia and Stein [73] , and Graupe and Pen [74) for the identification

of systems fall directly into the framework of the new convergence

results treated in Chapter IV. In fact , the results of Chapter IV

provide analytical justification for an even broader family of algo-

rithms than proposed in (73] and [741. The new results of Chapter V

are also applicable to the system identification problem.

~
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0. Essentially, previous convergence results contain a common
“conditional expectation condition” which is extremely difficult (if
not impossible) to satisfy when the “training data” is a correlated
sequence. In contrast, the new convergence results developed in the
present work are easily applied to cases where the “training data”
is heavily correlated. In fact, the new convergence results are
applicable when certain moments exist and certain “decay rates” on
two autocovarlance functions can be established. For example, when
the data sequence is normal and (i) H—dependent , (ii) autoregressive

• moving average (ARMA), or (iii) can be viewed as samples of a band—
limited continuous time process , the new convergence results can be
applied to establish the almost sure convergence of each algorithm
t reated.

Several special forms of data correlation matrices that are shown to
arise in descrete time signal processing are examined. New
computatignally efficient procedures are developed for both the
inversion of a matrix having one of the treated special forms and
for the solution of a corresponding set of simultaneous linear
equations. The special forms treated are termed Toeplitz and block
Toeplitz matrices.
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